Aerospace industry believes that the cost of a space project is a function of the weight of the major object being space sent into space. The following data represent weight in tons and the cost in $ millions.
Weights cost
1.59 54
3.20 150
0.56 20
0.89 25
1.45 40
1.90 120
2.57 124
calculate:
1) construct regression equation
2) What is the strength of the regression equation?
1)
The regression equation:
"y=ax+b"
"a=\\frac{(\\sum y)(\\sum x^2)-(\\sum x)(\\sum xy)}{n(\\sum x^2)-(\\sum x)^2}"
"a=\\frac{533\\cdot26.18-12.16\\cdot1203.99}{7\\cdot26.18-12.16^2}=-19.4"
"b=\\frac{n(\\sum xy)-(\\sum x)(\\sum y)}{n(\\sum x^2)-(\\sum x)^2}"
"b=\\frac{7\\cdot1203.99-12.16\\cdot533}{7\\cdot26.18-12.16^2}=55"
"y=-19.4x+55"
2)
Correlation coefficient:
"r=\\frac{cov(x,y)}{\\sqrt{s_x^2s_y^2}}"
"cov(x,y)=\\frac{\\sum (X-\\overline{X})(Y-\\overline{Y})}{n-1}"
"s_x^2=\\frac{\\sum (X-\\overline{X})^2}{n-1}"
"s_y^2=\\frac{\\sum (Y-\\overline{Y})^2}{n-1}"
"\\overline{X}=\\frac{\\sum x}{n}=\\frac{12.16}{7}=1.74"
"s_x^2=\\frac{5.06}{6}=0.84"
"\\overline{Y}=\\frac{\\sum y}{n}=\\frac{533}{7}=76.14"
"s_y^2=\\frac{17232.86}{6}=2872.14"
"cov(x,y)=278.1\/6=46.35"
"r=\\frac{46.35}{\\sqrt{0.84\\cdot2872.14}}=0.94"
The regression has a strong positive correlation.
Comments
Leave a comment