Question #161289

Aerospace industry believes that the cost of a space project is a function of the weight of the major object being space sent into space. The following data represent weight in tons and the cost in $ millions.


Weights cost

1.59 54

3.20 150

0.56 20

0.89 25

1.45 40

1.90 120

2.57 124


calculate:

1) construct regression equation

2) What is the strength of the regression equation?


1
Expert's answer
2021-02-19T13:58:19-0500

1)

The regression equation:

y=ax+by=ax+b

a=(y)(x2)(x)(xy)n(x2)(x)2a=\frac{(\sum y)(\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2}

a=53326.1812.161203.99726.1812.162=19.4a=\frac{533\cdot26.18-12.16\cdot1203.99}{7\cdot26.18-12.16^2}=-19.4


b=n(xy)(x)(y)n(x2)(x)2b=\frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2}

b=71203.9912.16533726.1812.162=55b=\frac{7\cdot1203.99-12.16\cdot533}{7\cdot26.18-12.16^2}=55


y=19.4x+55y=-19.4x+55



2)

Correlation coefficient:

r=cov(x,y)sx2sy2r=\frac{cov(x,y)}{\sqrt{s_x^2s_y^2}}

cov(x,y)=(XX)(YY)n1cov(x,y)=\frac{\sum (X-\overline{X})(Y-\overline{Y})}{n-1}

sx2=(XX)2n1s_x^2=\frac{\sum (X-\overline{X})^2}{n-1}

sy2=(YY)2n1s_y^2=\frac{\sum (Y-\overline{Y})^2}{n-1}


X=xn=12.167=1.74\overline{X}=\frac{\sum x}{n}=\frac{12.16}{7}=1.74


sx2=5.066=0.84s_x^2=\frac{5.06}{6}=0.84


Y=yn=5337=76.14\overline{Y}=\frac{\sum y}{n}=\frac{533}{7}=76.14


sy2=17232.866=2872.14s_y^2=\frac{17232.86}{6}=2872.14


cov(x,y)=278.1/6=46.35cov(x,y)=278.1/6=46.35


r=46.350.842872.14=0.94r=\frac{46.35}{\sqrt{0.84\cdot2872.14}}=0.94


The regression has a strong positive correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS