The TV repair company receives TVs with various faults. Therefore, their correction time Tis a random variable. Find the probability density function of this random dudge if the probability distribution function F(t) has the following form: (0, t <0, F(t) ={1-, t>0,
"F(t) = \\begin{cases}\n 0, &t<0 \\\\\n 1-e^{-t}, &t\\geq0\n\\end{cases}"
"f(t)=\\dfrac{dF}{dt}"
"f(t) = \\begin{cases}\n 0, &t<0 \\\\\n e^{-t}, &t\\geq0\n\\end{cases}"
"\\displaystyle\\int_{-\\infin}^{\\infin}f(t)dt=\\displaystyle\\int_{0}^{\\infin}e^{-t}dt"
"=\\lim\\limits_{A\\to \\infin}[-e^{-t}]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}=-0+1=1"
"f(t) = \\begin{cases}\n 0, &t<0 \\\\\n e^{-t}, &t\\geq0\n\\end{cases}"
Comments
Leave a comment