The joint density for the random variables (X, Y), nit where X is the unit temperature change and Y is the proportion of spectrum shift that a certain atomic particle produces, is
a.
"\\displaystyle\\int_{x}\\displaystyle\\int_{y}f(x,y)dxdy=\\displaystyle\\int_{0}^1\\displaystyle\\int_{x}^1cxy^2dxdy""=\\displaystyle\\int_{0}^1\\big[\\dfrac{1}{3}cxy^3\\big]\\begin{matrix}\n 1 \\\\\n x\n\\end{matrix}dx=\\displaystyle\\int_{0}^1\\dfrac{1}{3}c(x-x^4)dx"
"=\\big[\\dfrac{1}{3}c(\\dfrac{1}{2}x^2-\\dfrac{1}{5}x^5)\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{10}c=1=>c=10"
"f(x, y)= \\begin{cases}\n 10xy^2,&0<x<y<1 \\\\\n 0, &otherwise\n\\end{cases}"
b. The marginal probability density functions of X and Y
"=\\displaystyle\\int_{x}^{1}10xy^2dy=\\big[\\dfrac{10}{3}xy^3\\big]\\begin{matrix}\n 1 \\\\\n x\n\\end{matrix}=\\dfrac{10}{3}(x-x^4)"
"f_Y(y)=h(y)=\\displaystyle\\int_{-\\infin}^{\\infin}f(x,y)dx"
"=\\displaystyle\\int_{0}^{1}10xy^2dx=\\big[5y^2x^2\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=5y^2"
c. The conditional pdf of "f_{Y|x}(y)"
"=\\dfrac{3y^2}{1-x^3}, 0<x<y<1"
d. Find "P(Y>\\dfrac{1}{2}|x=0.25)" P(Y > 1 2 |X = 0.25)
"P(Y>\\dfrac{1}{2}|x=0.25)=\\displaystyle\\int_{0.25}^{1}10(0.25)y^2dy"
"=2.5[\\dfrac{y^3}{3}]\\begin{matrix}\n 1 \\\\\n 0.5\n\\end{matrix}=\\dfrac{35}{48}"
e. Two random variables X and Y are said to be independent if for every pair of x and y values
"g(x)h(y)=\\dfrac{10}{3}(x-x^4)(5y^2)"
"f(x, y)=10xy^2"
"x=\\dfrac{1}{4}, y=\\dfrac{1}{2}"
"f(\\dfrac{1}{4},\\dfrac{1}{2})=10(\\dfrac{1}{4})(\\dfrac{1}{2})^2=\\dfrac{5}{8}"
"\\dfrac{2125}{512}\\not=\\dfrac{5}{8}"
The random variables X and Y are not independent
Comments
Leave a comment