a.
∫x∫yf(x,y)dxdy=∫01∫x1cxy2dxdy
=∫01[31cxy3]1xdx=∫0131c(x−x4)dx
=[31c(21x2−51x5)]10=101c=1=>c=10
f(x,y)={10xy2,0,0<x<y<1otherwise
b. The marginal probability density functions of X and Y
fX(x)=g(x)=∫−∞∞f(x,y)dy
=∫x110xy2dy=[310xy3]1x=310(x−x4)
fY(y)=h(y)=∫−∞∞f(x,y)dx
=∫0110xy2dx=[5y2x2]10=5y2 c. The conditional pdf of fY∣x(y)
fY∣x(y)=fX(x)f(x,y)=310(x−x4)10xy2
=1−x33y2,0<x<y<1 d. Find P(Y>21∣x=0.25) P(Y > 1 2 |X = 0.25)
P(Y>21∣x=0.25)=∫0.25110(0.25)y2dy
=2.5[3y3]10.5=4835 e. Two random variables X and Y are said to be independent if for every pair of x and y values
f(x,y)=g(x)h(y)
g(x)h(y)=310(x−x4)(5y2)
f(x,y)=10xy2 x=41,y=21
g(41)h(21)=310(41−(41)4)(5(21)2)=5122125
f(41,21)=10(41)(21)2=85
5122125=85The random variables X and Y are not independent
Comments