Question #153917

The joint density for the random variables (X, Y), nit where X is the unit temperature change and Y is the proportion of spectrum shift that a certain atomic particle produces, is


1
Expert's answer
2021-01-05T18:20:02-0500

a.

xyf(x,y)dxdy=01x1cxy2dxdy\displaystyle\int_{x}\displaystyle\int_{y}f(x,y)dxdy=\displaystyle\int_{0}^1\displaystyle\int_{x}^1cxy^2dxdy

=01[13cxy3]1xdx=0113c(xx4)dx=\displaystyle\int_{0}^1\big[\dfrac{1}{3}cxy^3\big]\begin{matrix} 1 \\ x \end{matrix}dx=\displaystyle\int_{0}^1\dfrac{1}{3}c(x-x^4)dx

=[13c(12x215x5)]10=110c=1=>c=10=\big[\dfrac{1}{3}c(\dfrac{1}{2}x^2-\dfrac{1}{5}x^5)\big]\begin{matrix} 1 \\ 0 \end{matrix}=\dfrac{1}{10}c=1=>c=10

f(x,y)={10xy2,0<x<y<10,otherwisef(x, y)= \begin{cases} 10xy^2,&0<x<y<1 \\ 0, &otherwise \end{cases}

b. The marginal probability density functions of X and Y


fX(x)=g(x)=f(x,y)dyf_X(x)=g(x)=\displaystyle\int_{-\infin}^{\infin}f(x,y)dy

=x110xy2dy=[103xy3]1x=103(xx4)=\displaystyle\int_{x}^{1}10xy^2dy=\big[\dfrac{10}{3}xy^3\big]\begin{matrix} 1 \\ x \end{matrix}=\dfrac{10}{3}(x-x^4)

fY(y)=h(y)=f(x,y)dxf_Y(y)=h(y)=\displaystyle\int_{-\infin}^{\infin}f(x,y)dx

=0110xy2dx=[5y2x2]10=5y2=\displaystyle\int_{0}^{1}10xy^2dx=\big[5y^2x^2\big]\begin{matrix} 1 \\ 0 \end{matrix}=5y^2

c. The conditional pdf of fYx(y)f_{Y|x}(y)


fYx(y)=f(x,y)fX(x)=10xy2103(xx4)f_{Y|x}(y)=\dfrac{f(x,y)}{f_X(x)}=\dfrac{10xy^2}{\dfrac{10}{3}(x-x^4)}

=3y21x3,0<x<y<1=\dfrac{3y^2}{1-x^3}, 0<x<y<1

d. Find P(Y>12x=0.25)P(Y>\dfrac{1}{2}|x=0.25) P(Y > 1 2 |X = 0.25)

P(Y>12x=0.25)=0.25110(0.25)y2dyP(Y>\dfrac{1}{2}|x=0.25)=\displaystyle\int_{0.25}^{1}10(0.25)y^2dy

=2.5[y33]10.5=3548=2.5[\dfrac{y^3}{3}]\begin{matrix} 1 \\ 0.5 \end{matrix}=\dfrac{35}{48}

e. Two random variables X and Y are said to be independent if for every pair of x and y values


f(x,y)=g(x)h(y)f(x, y)=g(x)h(y)

g(x)h(y)=103(xx4)(5y2)g(x)h(y)=\dfrac{10}{3}(x-x^4)(5y^2)

f(x,y)=10xy2f(x, y)=10xy^2

x=14,y=12x=\dfrac{1}{4}, y=\dfrac{1}{2}


g(14)h(12)=103(14(14)4)(5(12)2)=2125512g(\dfrac{1}{4})h(\dfrac{1}{2})=\dfrac{10}{3}(\dfrac{1}{4}-(\dfrac{1}{4})^4)(5(\dfrac{1}{2})^2)=\dfrac{2125}{512}

f(14,12)=10(14)(12)2=58f(\dfrac{1}{4},\dfrac{1}{2})=10(\dfrac{1}{4})(\dfrac{1}{2})^2=\dfrac{5}{8}

212551258\dfrac{2125}{512}\not=\dfrac{5}{8}

The random variables X and Y are not independent



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS