Answer to Question #153917 in Statistics and Probability for Fessy Norbert

Question #153917

The joint density for the random variables (X, Y), nit where X is the unit temperature change and Y is the proportion of spectrum shift that a certain atomic particle produces, is


1
Expert's answer
2021-01-05T18:20:02-0500

a.

"\\displaystyle\\int_{x}\\displaystyle\\int_{y}f(x,y)dxdy=\\displaystyle\\int_{0}^1\\displaystyle\\int_{x}^1cxy^2dxdy"

"=\\displaystyle\\int_{0}^1\\big[\\dfrac{1}{3}cxy^3\\big]\\begin{matrix}\n 1 \\\\\n x\n\\end{matrix}dx=\\displaystyle\\int_{0}^1\\dfrac{1}{3}c(x-x^4)dx"

"=\\big[\\dfrac{1}{3}c(\\dfrac{1}{2}x^2-\\dfrac{1}{5}x^5)\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{10}c=1=>c=10"

"f(x, y)= \\begin{cases}\n 10xy^2,&0<x<y<1 \\\\\n 0, &otherwise\n\\end{cases}"

b. The marginal probability density functions of X and Y


"f_X(x)=g(x)=\\displaystyle\\int_{-\\infin}^{\\infin}f(x,y)dy"

"=\\displaystyle\\int_{x}^{1}10xy^2dy=\\big[\\dfrac{10}{3}xy^3\\big]\\begin{matrix}\n 1 \\\\\n x\n\\end{matrix}=\\dfrac{10}{3}(x-x^4)"

"f_Y(y)=h(y)=\\displaystyle\\int_{-\\infin}^{\\infin}f(x,y)dx"

"=\\displaystyle\\int_{0}^{1}10xy^2dx=\\big[5y^2x^2\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=5y^2"

c. The conditional pdf of "f_{Y|x}(y)"


"f_{Y|x}(y)=\\dfrac{f(x,y)}{f_X(x)}=\\dfrac{10xy^2}{\\dfrac{10}{3}(x-x^4)}"

"=\\dfrac{3y^2}{1-x^3}, 0<x<y<1"

d. Find "P(Y>\\dfrac{1}{2}|x=0.25)" P(Y > 1 2 |X = 0.25)

"P(Y>\\dfrac{1}{2}|x=0.25)=\\displaystyle\\int_{0.25}^{1}10(0.25)y^2dy"

"=2.5[\\dfrac{y^3}{3}]\\begin{matrix}\n 1 \\\\\n 0.5\n\\end{matrix}=\\dfrac{35}{48}"

e. Two random variables X and Y are said to be independent if for every pair of x and y values


"f(x, y)=g(x)h(y)"

"g(x)h(y)=\\dfrac{10}{3}(x-x^4)(5y^2)"

"f(x, y)=10xy^2"

"x=\\dfrac{1}{4}, y=\\dfrac{1}{2}"


"g(\\dfrac{1}{4})h(\\dfrac{1}{2})=\\dfrac{10}{3}(\\dfrac{1}{4}-(\\dfrac{1}{4})^4)(5(\\dfrac{1}{2})^2)=\\dfrac{2125}{512}"

"f(\\dfrac{1}{4},\\dfrac{1}{2})=10(\\dfrac{1}{4})(\\dfrac{1}{2})^2=\\dfrac{5}{8}"

"\\dfrac{2125}{512}\\not=\\dfrac{5}{8}"

The random variables X and Y are not independent



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS