What is the cdf of tossing a pair of dice several times, let take X RV is the sum of the dice possiple outcomes.
Favorite outcome for X=2 is {1,1}.
Favorite outcomes for X=3 are {1,2},{2,1}.
Favorite outcomes for X=4 are {1,3},{2,2},{3,1}.
Favorite outcomes for X=5 are {1,4},{2,3},{3,2},{4,1}.
And so on.
Thus, theoretical probability of the 11 outcomes from tossing two dice:
"\\begin{matrix}\n X\\;\\;\\;\\;\\;| & 2&3&4&5&6&7&8&9&10&11&12 \\\\\n P(X)|& \\frac{1}{36}&\\frac{2}{36}&\\frac{3}{36}&\\frac{4}{36}&\\frac{5}{36}&\\frac{6}{36}&\\frac{5}{36}&\\frac{4}{36}&\\frac{3}{36}&\\frac{2}{36}&\\frac{1}{36}\n\\end{matrix}"
Cumulative distribution function F(X):
"F(2)=Pr(X\\le2)=\\frac{1}{36}."
"F(3)=Pr(X\\le3)=F(2)+Pr(X=3)=\\frac{1}{36}+\\frac{2}{36}=\\frac{3}{36}."
"F(4)=Pr(X\\le4)=F(3)+Pr(X=4)=\\frac{3}{36}+\\frac{3}{36}=\\frac{6}{36}."
"F(5)=Pr(X\\le5)=F(4)+Pr(X=5)=\\frac{6}{36}+\\frac{4}{36}=\\frac{10}{36}."
And so on.
Finally,
"\\begin{matrix}\n X\\;\\;\\;\\;\\;| & 2&3&4&5&6&7&8&9&10&11&12 \\\\\n F(X)|& \\frac{1}{36}&\\frac{3}{36}&\\frac{6}{36}&\\frac{10}{36}&\\frac{15}{36}&\\frac{21}{36}&\\frac{26}{36}&\\frac{30}{36}&\\frac{33}{36}&\\frac{35}{36}&1\n\\end{matrix}"
Comments
Leave a comment