"\\overline{X}=(987+966+955+977+981+967+975+980+953+972)\/10=971.3"
Stating the hypotheses:
H0: "\\mu=975"
H1: "\\mu\\ne975"
Computing the test value:
"z=\\frac{\\overline{X}-\\mu}{\\sigma\/\\sqrt{n}}=\\frac{971.3-975}{45.2\/\\sqrt{10}}=-0.26"
Let's find critical value for "\\alpha"=0.05 (two-tailed test):
critical values are 1.96 and -1.96
-1.96<-0.26<1.96
So, we can't reject null hypothesis.
We can report to the manager that the new machine has a mean net weight of fruit equal to 975 grams.
Let's calculate 95% confidence interval for the variance:
s2 = "\\frac{n(\\sum{X^2})-(\\sum{X})^2}{n(n-1)}=\\frac{10*9435347-9713^2}{90}=123.3"
"\\frac{(n-1)*s^2}{\\chi^2_{right}}<\\sigma^2<\\frac{(n-1)*s^2}{\\chi^2_{left}}"
For "\\alpha"=0.05 and d.f.=9:
"\\chi^2_{right}"= 16.919
"\\chi^2_{left}"= 3.325
"\\frac{9*123.3}{16.919}<\\sigma^2<\\frac{9*123.3}{3.325}"
"65.6<\\sigma^2<333.7"
Comments
Leave a comment