"P(X>9.6) = P(Z > \\frac {9.6 - \\mu} {\\sigma}) =\\\\\n1 - P(Z \\le \\frac {9.6 - \\mu} {\\sigma}) = 0.8159\\\\\n\\frac {9.6 - \\mu} {\\sigma}=Z_{1-0.8159}=Z_{0.1841} =-0.8999"
"P(9.6\\le X\\le13.8) = P(X\\ge 9.6) - P(X\\ge 13.8) = 0.07008\\\\\nP(X \\ge 13.8) = 0.8159 - 0.07008 = 0.74582\\\\\n\\frac {13.8 - \\mu} {\\sigma}=Z_{1-0.74582}=Z_{0.25418} =-0.6614"
From two equations we found that sigma = 17.6133, mean = mu = 25.4493,
var = s2=310.227
And
"P(X\\ge13.8 |X\\ge 9.6) =\\frac{P(X\\ge13.8)}{P(X\\ge 9.6)}=\\frac{0.74582}{0.8159}= 0.9141"
Comments
Leave a comment