If a random variable X follows Normal distribution such that P (9.6≤X≤13.8)=0.07008 and P(X≥9.6)=0.8159 where Find the mean & variance of X and find P(X≥ 13.8 / X ≥ 9.6).
From the equation;
P(X>9.6)=0.8159
P(x>z)=0.8159
z=-0.9
P(X>13.8) = P(X>9.6) - P (9.6"\\leq" X"\\leq" 13.8) = 0.8159 - 0.07008 = 0.7458
P(x>z)=0.7458
z=-0.661
z="\\frac{X-\\mu}{\\sigma}"
-0.9="\\frac{9.6-\\mu}{\\sigma}"
-0.661="\\frac{13.8-\\mu}{\\sigma}"
"-0.9*\\sigma+\\mu=9.6"
"-0.661*\\sigma+\\mu=13.8"
"\\sigma=17.6"
"\\mu=25.4"
P(X"\\ge"13.8|X"\\ge"9.6) = P(X"\\ge"13.8)/P(X"\\ge"9.6) = 0.7458/0.8159 = 0.914
Comments
Leave a comment