Question #152931

If a random variable X follows Normal distribution such that P (9.6≤X≤13.8)=0.07008 and P(X≥9.6)=0.8159 where Find the mean & variance of X and find P(X≥ 13.8 / X ≥ 9.6).


1
Expert's answer
2021-01-03T14:07:53-0500

From the equation;

P(X>9.6)=0.8159

P(x>z)=0.8159

z=-0.9


P(X>13.8) = P(X>9.6) - P (9.6\leq X\leq 13.8) = 0.8159 - 0.07008 = 0.7458

P(x>z)=0.7458

z=-0.661

z=Xμσ\frac{X-\mu}{\sigma}


-0.9=9.6μσ\frac{9.6-\mu}{\sigma}

-0.661=13.8μσ\frac{13.8-\mu}{\sigma}


0.9σ+μ=9.6-0.9*\sigma+\mu=9.6

0.661σ+μ=13.8-0.661*\sigma+\mu=13.8


σ=17.6\sigma=17.6

μ=25.4\mu=25.4


P(X\ge13.8|X\ge9.6) = P(X\ge13.8)/P(X\ge9.6) = 0.7458/0.8159 = 0.914



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS