Question #152988

If a random variable X follows Normal distribution such that P (9,6<X<13.8)=0.07008 and P(X>9.6)= 0.8159. Find the mean & variance of X and find P(X> 13.8/X>9.6).


1
Expert's answer
2020-12-29T14:54:24-0500

We remind that the probability density function for the normal distribution has the form: p(x)=1σ2πe12(xμσ)2p(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(\frac{x-\mu}{\sigma})^2} . We have: 9.613.81σ2πe12(xμσ)2dx=0.07008\int_{9.6}^{13.8}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(\frac{x-\mu}{\sigma})^2}dx=0.07008 and 9.6+1σ2πe12(xμσ)2dx=0.8159\int_{9.6}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(\frac{x-\mu}{\sigma})^2}dx=0.8159 . We make the change: z=xσμσ=xσαz=\frac{x}{\sigma}-\frac{\mu}{\sigma}=\frac{x}{\sigma}-\alpha and receive: 9.6σα13.8σα12πe12z2dz=0.07008\int_{\frac{9.6}{\sigma}-\alpha}^{\frac{13.8}{\sigma}-\alpha}\frac{1}{\sqrt{2\pi}}e^{-\frac12z^2}dz=0.07008 and 9.6σα+1σ2πe12z2dz=0.8159\int_{\frac{9.6}{\sigma}-\alpha}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12z^2}dz=0.8159 with α=σμ\alpha=\frac{\sigma}{\mu} .

From the last integral we receive that: 9.6σα=0.9\frac{9.6}{\sigma}-\alpha=-0.9. We substitute that in the first one and get: 0.663=13.8σα-0.663=\frac{13.8}{\sigma}-\alpha . We receive: 4,2σ=0,237\frac{4,2}{\sigma}=0,237. Thus, we get: σ=17,722\sigma=17,722 and μ=1.442.\mu=1.442. P(X>13.8)=13.8+1σ2πe12(xμσ)2dx0.2428P(X>13.8)=\int_{13.8}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(\frac{x-\mu}{\sigma})^2}dx\approx0.2428 and

P(X>9.6)=9.6+1σ2πe12(xμσ)2dx0.3226P(X>9.6)=\int_{9.6}^{+\infty}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac12(\frac{x-\mu}{\sigma})^2}dx\approx0.3226.

P(X>13.8/X>9.6)=P((X>13.8)(X>9.6))P(X>9.6)=P(X>13.8)P(X>9.6)=0.24280.32260.7526P(X>13.8/X>9.6)=\frac{P((X>13.8)\, \cap\, (X>9.6))}{P(X>9.6)}=\frac{P(X>13.8)}{P(X>9.6)}=\frac{0.2428}{0.3226}\approx0.7526

We used the following code in Anaconda for computations:


from scipy import integrate

import numpy as np

import math


func = lambda x:(1/(17.722*math.sqrt(2)*math.sqrt(math.pi)))*math.exp(-1/2*((x-1.442)/17.722)*((x-1.442)/17.722))


e = integrate.quad(func, 9.6,+np.inf)

print(e)

We subsituted different values of μ\mu and σ\sigma in it.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS