(i) a) X=800
z="\\frac{X-\\mu}{\\sigma}=\\frac{800-1200}{200}=-2"
P(x<z)=0.228
Number of bulbs expected to fail:
N=2000*0.228=456
b) X1=900
z1="\\frac{X_1-\\mu}{\\sigma}=\\frac{900-1200}{200}=-1.5"
X2=1750
z2="\\frac{X_2-\\mu}{\\sigma}=\\frac{1750-1200}{200}=2.75"
P(z1<x<z2)=0.930
N=2000*0.930=1860
c) P(x<z)=0.1
z=-1.282
10 % of the bulbs would fail in:
X="z*\\sigma+\\mu" = -1.282*200+1200 = 944 hours
d) P(z<x)=150/2000=0.075
z=1.44
150 bulbs are still in good condition in:
X="z*\\sigma+\\mu" = 1.44*200+1200 = 1488 hours
Comments
Leave a comment