A botanist is studying the distribution of daisies in a field. The field is divided into a number of equal sized squares. The mean number of daisies per square is assumed to be 3.
The daisies are distributed randomly throughout the field. Find the probability that, in a randomly chosen square there will be,
a. More than 2 daisies
b. Either 5 or 6 daisies.
a. The mean no. of diasies are 3. It follows a poisson distribution.
X ~ Poi(λ = 3)
"P(X=x) = \\frac{e^\u03bb\u03bb ^x}{x!} \\\\\n\n= \\frac{e^{-3}3^x}{x!} \\\\\n\nP(X>2) = 1 -P(X\u22642) \\\\\n\n= 1 - [P(X=0) + P(X=1) + p(X=2)] \\\\\n\n= 1 -( \\frac{e^{-3}3^0}{0!} + \\frac{e^{-3}3^1}{1!} + \\frac{e^{-3}3^2}{2!}) \\\\\n\n= 1 -(0.0498+0.1494+0.224) \\\\\n\nP(X>2) = 0.5768"
b. Either 5 or 6 daisies
"P(either \\; 5 \\; or \\; 6 \\; daisies ) = P(X=5) + P(X=6) \\\\\n\n= 0.1008 + 0.0504 \\\\\n\n= 0.1512"
Comments
Leave a comment