Question #151159
The publisher wants to determine the relationship between the number of copies of books sold and the expenditure made. A sample of 10 books studied shows the following data.

Copies sold
(in thousands) –x
5
13
24
35
58
73
98
100
121
189

Advertising Expense (thousands of pesos)-y
5
9
5
7
8
6
12
21
38
30


1. Determine the regression model.
2. How many copies will be sold if expenditure is P40k ?
3. If there are 220k copies, how much will be the advertising expense?
4. Test the regression coefficient.
1
Expert's answer
2020-12-16T17:58:44-0500

Solution

x=716 y=141 n=10\sum x = 716 \space \sum y=141 \space n=10


x2=80654 y2=3209xy=14953\sum x^2 = 80654 \space \sum y^2 =3209 \sum xy =14953

1. Regression Model


y^=α^+β^x\hat y= \hat\alpha +\hat\beta x

β^=nxyxynx2(x)2\hat\beta = {n \sum xy - \sum x \sum y \over n \sum x^2 - {( \sum x)} ^2}

=10(14953)(716141)10(80654)(716)2={10(14953)-(716*141) \over 10(80654)-{(716)}^2}=0.1653=0.1653

α=yβxn\alpha = {\sum y - \beta \sum x \over n}

=1410.1653(716)10=2.2645={141 - 0.1653(716) \over 10} =2.2645

2. When expenditure is p40k

y=40


40=2.2645+0.1653x40=2.2645 +0.1653x

x=402.26450.1653=228.28x= {40-2.2645 \over 0.1653} = 228.28

228.28k copies\approx 228.28k \space copies


3. If there are 220k copies.

x=220


y=2.2645+0.1653(220)=38.63y=2.2645 + 0.1653(220) = 38.63

=p38.63k


4. Test regression coefficient

H0:β=0 vs H1:β0H_0 : \beta =0 \space vs \space H_1: \beta \not = 0


t=β0SSSxt={ \beta - 0 \over {S \over \sqrt {SS_x}}}

S=SSyβSSxn2S= \sqrt {SS_y - \beta SS_x \over n-2}

SSy=ny2(y)2n=1220.9SS_y = {n \sum y^2 - {( \sum y)} ^2 \over n}=1220.9

SSx=nx2(x)2n=29388.4SS_x = {n \sum x^2 - {( \sum x)} ^2 \over n} = 29388.4

Sxy=nxyxyn=4857.4S_{xy} = {n \sum xy - \sum x \sum y \over n} =4857.4

S=1220.90.1653(4857.4)8=7.228S= \sqrt {1220.9 - 0.1653 (4857.4) \over 8} = 7.228

t=0.165307.22829388.4=3.921t= {0.1653 - 0 \over {7.228 \over 29388.4}} = 3.921

T-critical

t0.025,8=2.306t_{0.025,8}=2.306

Since t-stat > t-critical, we reject H0

Therefore the regression coefficient is significant


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS