Let's denote x for the number of households who do not have internet access,
n for the sample size, p for the probability of success.
Here
"n=80"
"x=25"
"p=\\frac{25}{80}=0.3125"
Here x follows binomial distribution
"P(X=x)=C(n,x)\\cdot p^x\\cdot (1-p)^{n-x}"
a) n = 10
"P(X=6)=C(10,6)\\cdot 0.3125^6\\cdot (1-0.3125)^{10-6}=\\frac{10!}{6!4!}\\cdot 0.3125^6\\cdot 0.6875^4="
"=0.0437"
b) "P(X\\ge5)=P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)+P(X=10)"
"P(X=5)=C(10,5)\\cdot 0.3125^5\\cdot 0.6875^5=0.1153"
"P(X=6)=0.0437"
"P(X=7)=C(10,7)\\cdot 0.3125^7\\cdot 0.6875^3=0.0113"
"P(X=8)=C(10,8)\\cdot 0.3125^8\\cdot 0.6875^2=0.0019"
"P(X=9)=C(10,9)\\cdot 0.3125^9\\cdot 0.6875^1=0.0002"
"P(X=10)=C(10,10)\\cdot 0.3125^10\\cdot 0.6875^0=0.000009"
"P(X\\ge5)=0.1153+0.0437+0.0113+0.0019+0.0002+0.000009=0.1724"
c)
"P(X\\le2)=P(X=0)+P(X=1)+P(X=2)"
"P(X=0)=C(10,0)\\cdot 0.3125^0\\cdot 0.6875^10=0.0236"
"P(X=1)=C(10,1)\\cdot 0.3125^1\\cdot 0.6875^9=0.1072"
"P(X=2)=C(10,2)\\cdot 0.3125^2\\cdot 0.6875^8=0.2193"
"P(X\\le2)=0.0236+0.1072+0.2193=0.3501"
d)
"E(X)=np=10\\cdot0.3125=3.125\\simeq4"
The expected number of laptop recipients who do not have Internet access is 4.
e)
"E(X)=3.125"
"var(X)=np(1-p)=10\\cdot0.3125\\cdot0.6875=2.1484"
"sd(X)=\\sqrt{var(X)}=\\sqrt{2.1484}=1.4657"
Answer:
a) 0.0437
b) 0.1724
c) 0.3501
d) The expected number of laptop recipients who do not have Internet access is 4.
e) 3.125, 2.1484, 1.4657.
Comments
Leave a comment