The most efficient way to solve this task is to list all possible combinations. We have 2 apples (a), 2 peaches(p) and 2 oranges (o). Let's write all possible combinations of tree fruits (order here doesn't matter)
1a 1p 1o
2a 1p
2a 1o
1a 2p
1a 2o
2o 1a
2o 1p
7 combinations in total.
To built probability distribution, we need to find following probabilities P(P=0), P(P=1), P(P=2). P=3 and more is not possible, because we have only 2 oranges.
Let's assign P value to every combination:
1a 1p 1o P=1
2a 1p P=0
2a 1o P=1
2p 1a P=0
2p 1o P=1
2o 1a P=2
2o 1p P=2
"\\displaystyle P(P=0) = \\frac{2}{7}" because there 2 combinations with P=0 out of 7
"\\displaystyle P(P=1) = \\frac{3}{7}"
"\\displaystyle P(P=2) = \\frac{2}{7}"
So, the probability distribution is
value of P P=0 P=1 P=2
probability 2/7 3/7 2/7
Comments
Leave a comment