f(x)=3x(2−x)4f(x)=\frac{3x(2-x)}{4}f(x)=43x(2−x) , 0<x<20<x<20<x<2
Check if it is a pdf
∫023x(2−x)4dx\int_0^2\frac{3x(2-x)}{4}dx∫0243x(2−x)dx
=[3x24−x34]02=[\frac{3x^2}{4}-\frac{x^3}{4}]_0^2=[43x2−4x3]02
=(3−2)−0=1=(3-2)-0=1=(3−2)−0=1 (it is a pdf)
P(x>14)=∫1423x(2−x)4dxP(x>\frac{1}{4})=\int_{\frac{1}{4}}^2\frac{3x(2-x)}{4}dxP(x>41)=∫41243x(2−x)dx
=[3x24−x34]142=[\frac{3x^2}{4}-\frac{x^3}{4}]_{\frac{1}{4}}^2=[43x2−4x3]412
=[3−2]−[164(3−14)]=[3-2]-[\frac{1}{64}(3-\frac{1}{4})]=[3−2]−[641(3−41)]
=1−11256=245256=0.957=1-\frac{11}{256}=\frac{245}{256}=0.957=1−25611=256245=0.957
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment