"\\frac{r+1}{n+1}" is an estimator of the parameter "p". We will show that "\\frac{r+1}{n+1}" is a biased estimator of "p" using the definiton of a biased estimator.
"E(\\frac{r+1}{n+1})=\\frac{1}{n+1}E(r+1)=\\frac{1}{n+1}E(\\sum_{i=1}^n X_i+1)=\\\\\n=(E(X_i)=p)=\\frac{1}{n+1}(np+1)\\neq p."
So "\\frac{r+1}{n+1}" is a biased estimator of "p".
"\\text{Bias}(\\frac{r+1}{n+1})=E(\\frac{r+1}{n+1})-p=\\frac{np+1}{n+1}-p=\\frac{1-p}{n+1}.\\\\\n\\frac{1-p}{n+1}\\rightarrow 0\\text{ as } n\\rightarrow \\infty."
Comments
Leave a comment