"(i) \\text{We will show that } T_1 \\text{ and } T_2 \\text{ are unbiased estimators}\\\\\n\\text{of the parameter } \\mu \\text{ using the definition of an unbiased estimator}.\\\\\nE(T_1)=E(X_1+X_2-X_3)=\\mu+\\mu-\\mu=\\mu.\\\\\nE(T_2)=E(2X_1+3X_3-4X_2)=2\\mu+3\\mu-4\\mu=\\mu.\\\\\n\\text{So } T_1 \\text{ and } T_2 \\text{ are unbiased estimators of } \\mu.\\\\\n(ii) E(T_3)=\\mu.\\\\\n\\frac{1}{3}(\\lambda\\mu+\\mu+\\mu)=\\mu.\\\\\n\\text{Then }\\lambda=1.\\\\\n(iii) D(T_1)=D(X_1+X_2-X_3)=\\sigma^2+\\sigma^2-\\sigma^2=\\sigma^2.\\\\\n D(T_2)=D(2X_1+3X_3-4X_2)=2\\sigma^2+3\\sigma^2-4\\sigma^2=\\sigma^2.\\\\\n D(T_3)=D\\big(\\frac{1}{3}(X_1+X_2+X_3)\\big)=\\frac{1}{9}(\\sigma^2+\\sigma^2+\\sigma^2)=\\frac{1}{3}\\sigma^2.\\\\\n\\text{Since } T_3 \\text{ has the lowest variance then } T_3\\\\\n\\text{is the best estimator of } \\mu."
Comments
Leave a comment