Answer to Question #129768 in Statistics and Probability for Javed Akhtar

Question #129768
Given the following data
X 1 3 4 6 8 9 11 14
y 1 2 4 4 5 7 8 9
Determine the least square line using x as independent variable.
Find the estimated value for given values of x and show that
(a) ∑▒Y=∑▒Y ̂ (b) ∑▒〖e_i=o〗
1
Expert's answer
2020-08-20T17:59:20-0400

Solution :

The independent variable is X, and the dependent variable is Y. In order to compute the regression coefficients, the following table needs to be used:




"\\overline{X}=\\frac{1}{n}\\sum_{i=1}^{n}X_{i}=\\frac{56}{8}=7"


"\\overline{Y}=\\frac{1}{n}\\sum_{i=1}^{n}Y_{i}=\\frac{40}{8}=5"


"SS_{XX}=\\sum_{i=1}^{n}X_{i}^2 -\\frac{1}{n}(\\sum_{i=1}^{n}X_{i})^2= 524- \\frac{56^2}{8}=132"


"SS_{YY}=\\sum_{i=1}^{n}Y_{i}^2 -\\frac{1}{n}(\\sum_{i=1}^{n}Y_{i})^2= 256- \\frac{40^2}{8}=56"


"SS_{XY}=\\sum_{i=1}^{n}X_{i}Y_{i} -\\frac{1}{n}\\sum_{i=1}^{n}X_{i}\\sum_{i=1}^{n}Y_{i}= 364- \\frac{56*40}{8}=84"


Therefore, based on the above calculations, the regression coefficients (the slope m, and the y-intercept n are obtained as follows:

"m=\\frac{SS_{XY}}{SS_{XX}}=\\frac{84}{132}=0.6364"


"n=\\overline{Y}-\\overline{X}*m = 5-7*0.6364=0.5455"

Therefore, we find that the regression equation is:


Y=0.5455+0.6364X


b)"\\frac{1}{n}\\sum_{i=1}^{n}\\widehat{e_{i}}=0" because the intercept of the model absorbs the mean of the residuals.

a)By definition "Y_{i}=\\widehat{Y_{i}}+\\widehat{\\epsilon _{i}}"

Since

"\\sum_{i=1}^{n}\\widehat{e_{i}}=0"


"\\frac{1}{n}\\sum_{i=1}^{n}Y_{i}= \\frac{1}{n}\\sum_{i=1}^{n}\\widehat{Y}_{i}+\\frac{1}{n}\\sum_{i=1}^{n}\\widehat{e_{i}}"


"\\frac{1}{n}\\sum_{i=1}^{n}Y_{i}= \\frac{1}{n}\\sum_{i=1}^{n}\\widehat{Y}_{i}+0"

"=" "\\frac{1}{n}\\sum_{i=1}^{n}\\widehat{Y}_{i}"


Hence the proof.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS