Solution :
The independent variable is X, and the dependent variable is Y. In order to compute the regression coefficients, the following table needs to be used:
"\\overline{X}=\\frac{1}{n}\\sum_{i=1}^{n}X_{i}=\\frac{56}{8}=7"
"\\overline{Y}=\\frac{1}{n}\\sum_{i=1}^{n}Y_{i}=\\frac{40}{8}=5"
"SS_{XX}=\\sum_{i=1}^{n}X_{i}^2 -\\frac{1}{n}(\\sum_{i=1}^{n}X_{i})^2= 524- \\frac{56^2}{8}=132"
"SS_{YY}=\\sum_{i=1}^{n}Y_{i}^2 -\\frac{1}{n}(\\sum_{i=1}^{n}Y_{i})^2= 256- \\frac{40^2}{8}=56"
"SS_{XY}=\\sum_{i=1}^{n}X_{i}Y_{i} -\\frac{1}{n}\\sum_{i=1}^{n}X_{i}\\sum_{i=1}^{n}Y_{i}= 364- \\frac{56*40}{8}=84"
Therefore, based on the above calculations, the regression coefficients (the slope m, and the y-intercept n are obtained as follows:
"m=\\frac{SS_{XY}}{SS_{XX}}=\\frac{84}{132}=0.6364"
"n=\\overline{Y}-\\overline{X}*m = 5-7*0.6364=0.5455"
Therefore, we find that the regression equation is:
Y=0.5455+0.6364X
b)"\\frac{1}{n}\\sum_{i=1}^{n}\\widehat{e_{i}}=0" because the intercept of the model absorbs the mean of the residuals.
a)By definition "Y_{i}=\\widehat{Y_{i}}+\\widehat{\\epsilon _{i}}"
Since
"\\sum_{i=1}^{n}\\widehat{e_{i}}=0"
"\\frac{1}{n}\\sum_{i=1}^{n}Y_{i}= \\frac{1}{n}\\sum_{i=1}^{n}\\widehat{Y}_{i}+\\frac{1}{n}\\sum_{i=1}^{n}\\widehat{e_{i}}"
"\\frac{1}{n}\\sum_{i=1}^{n}Y_{i}= \\frac{1}{n}\\sum_{i=1}^{n}\\widehat{Y}_{i}+0"
"=" "\\frac{1}{n}\\sum_{i=1}^{n}\\widehat{Y}_{i}"
Hence the proof.
Comments
Leave a comment