x − 2 − 1 0 1 2 3 p ( x ) 0.1 a 0.2 2 a 0.3 a \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c:c}
x & -2 & -1 &\ \ 0\ & \ 1\ & 2\ & \ 3 \\ \hline
p(x) & 0.1 & a & 0.2 & 2a & 0.3 \ & a
\end{array} x p ( x ) − 2 0.1 − 1 a 0 0.2 1 2 a 2 0.3 3 a
(i)
∑ x p ( x ) = 1 \displaystyle\sum_{x}p(x)=1 x ∑ p ( x ) = 1 0.1 + a + 0.2 + 2 a + 0.3 + a = 1 0.1+a+0.2+2a+0.3+a=1 0.1 + a + 0.2 + 2 a + 0.3 + a = 1 4 a = 0.4 4a=0.4 4 a = 0.4 a = 0.1 a=0.1 a = 0.1
x − 2 − 1 0 1 2 3 p ( x ) 0.1 0.1 0.2 0.2 0.3 0.1 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c:c}
x & -2 & -1 &\ \ 0\ & \ 1\ & 2\ & \ 3 \\ \hline
p(x) & 0.1 & 0.1 & 0.2 & 0.2 & 0.3 \ & 0.1
\end{array} x p ( x ) − 2 0.1 − 1 0.1 0 0.2 1 0.2 2 0.3 3 0.1 (ii)
F ( − 2 ) = F ( X ≤ − 2 ) = p ( − 2 ) = 0.1 F(-2)=F(X\leq-2)=p(-2)=0.1 F ( − 2 ) = F ( X ≤ − 2 ) = p ( − 2 ) = 0.1
F ( − 1 ) = F ( X ≤ − 1 ) = p ( − 2 ) + p ( − 1 ) = F(-1)=F(X\leq-1)=p(-2)+p(-1)= F ( − 1 ) = F ( X ≤ − 1 ) = p ( − 2 ) + p ( − 1 ) =
= 0.1 + 0.1 = 0.2 =0.1+0.1=0.2 = 0.1 + 0.1 = 0.2
F ( 0 ) = F ( X ≤ 0 ) = p ( − 2 ) + p ( − 1 ) + p ( 0 ) = F(0)=F(X\leq0)=p(-2)+p(-1)+p(0)= F ( 0 ) = F ( X ≤ 0 ) = p ( − 2 ) + p ( − 1 ) + p ( 0 ) =
= 0.1 + 0.1 + 0.2 = 0.4 =0.1+0.1+0.2=0.4 = 0.1 + 0.1 + 0.2 = 0.4
F ( 1 ) = F ( X ≤ 1 ) = p ( − 2 ) + p ( − 1 ) + p ( 0 ) + p ( 1 ) = F(1)=F(X\leq1)=p(-2)+p(-1)+p(0)+p(1)= F ( 1 ) = F ( X ≤ 1 ) = p ( − 2 ) + p ( − 1 ) + p ( 0 ) + p ( 1 ) =
= 0.1 + 0.1 + 0.2 + 0.2 = 0.6 =0.1+0.1+0.2+0.2=0.6 = 0.1 + 0.1 + 0.2 + 0.2 = 0.6
F ( 2 ) = F ( X ≤ 2 ) = p ( − 2 ) + p ( − 1 ) + p ( 0 ) + p ( 1 ) + p ( 2 ) = F(2)=F(X\leq2)=p(-2)+p(-1)+p(0)+p(1)+p(2)= F ( 2 ) = F ( X ≤ 2 ) = p ( − 2 ) + p ( − 1 ) + p ( 0 ) + p ( 1 ) + p ( 2 ) =
= 0.1 + 0.1 + 0.2 + 0.2 + 0.3 = 0.9 =0.1+0.1+0.2+0.2+0.3=0.9 = 0.1 + 0.1 + 0.2 + 0.2 + 0.3 = 0.9
F ( 3 ) = F ( X ≤ 3 ) = 1 F(3)=F(X\leq3)=1 F ( 3 ) = F ( X ≤ 3 ) = 1
F ( x ) = { 0 x < − 2 0.1 − 2 ≤ x < − 1 0.2 − 1 ≤ x < 0 0.4 0 ≤ x < 1 0.6 1 ≤ x < 2 0.9 2 ≤ x < 3 1 3 ≤ x F(x) = \begin{cases}
0 & \ \ \ x<-2 \\
0.1 & -2\leq x<-1 \\
0.2 & -1\leq x<0 \\
0.4 &\ \ \ 0\leq x<1\\
0.6 & \ \ \ 1\leq x<2 \\
0.9 & \ \ \ 2\leq x<3\\
1 &\ \ \ 3\leq x
\end{cases} F ( x ) = ⎩ ⎨ ⎧ 0 0.1 0.2 0.4 0.6 0.9 1 x < − 2 − 2 ≤ x < − 1 − 1 ≤ x < 0 0 ≤ x < 1 1 ≤ x < 2 2 ≤ x < 3 3 ≤ x (iii)
μ = E ( X ) = ∑ x x ⋅ p ( x ) \mu=E(X)=\displaystyle\sum_{x}x\cdot p(x) μ = E ( X ) = x ∑ x ⋅ p ( x )
μ = E ( X ) = − 2 ⋅ 0.1 + ( − 1 ) ⋅ 0.1 + 0 ⋅ 0.2 + \mu=E(X)=-2\cdot0.1+(-1)\cdot0.1+0\cdot0.2+ μ = E ( X ) = − 2 ⋅ 0.1 + ( − 1 ) ⋅ 0.1 + 0 ⋅ 0.2 + + 1 ⋅ 0.2 + 2 ⋅ 0.3 + 3 ⋅ 0.1 = 0.8 +1\cdot0.2+2\cdot0.3+3\cdot0.1=0.8 + 1 ⋅ 0.2 + 2 ⋅ 0.3 + 3 ⋅ 0.1 = 0.8
σ 2 = E ( X 2 ) − μ 2 \sigma^2=E(X^2)-\mu^2 σ 2 = E ( X 2 ) − μ 2
E ( X 2 ) = ( − 2 ) 2 ⋅ 0.1 + ( − 1 ) 2 ⋅ 0.1 + ( 0 ) 2 ⋅ 0.2 + E(X^2)=(-2)^2\cdot0.1+(-1)^2\cdot0.1+(0)^2\cdot0.2+ E ( X 2 ) = ( − 2 ) 2 ⋅ 0.1 + ( − 1 ) 2 ⋅ 0.1 + ( 0 ) 2 ⋅ 0.2 + + ( 1 ) 2 ⋅ 0.2 + ( 2 ) 2 ⋅ 0.3 + ( 3 ) 2 ⋅ 0.1 = 2.8 +(1)^2\cdot0.2+(2)^2\cdot0.3+(3)^2\cdot0.1=2.8 + ( 1 ) 2 ⋅ 0.2 + ( 2 ) 2 ⋅ 0.3 + ( 3 ) 2 ⋅ 0.1 = 2.8
σ 2 = 2.8 − ( 0.8 ) 2 = 2.16 \sigma^2=2.8-(0.8)^2=2.16 σ 2 = 2.8 − ( 0.8 ) 2 = 2.16
Comments