Answer to Question #129653 in Statistics and Probability for Gazal

Question #129653
Define r.U and Mathematical expectation of a r.U. A discrete r.U. has the following probability distribution.
X : -2 -1 0 1 2 3
P(X) : 0.1 a 0.2 2a 0.3 a
Find i) The value of ‘a’,
ii) its distribution function F(X),
iii) Mean and variance of X.
1
Expert's answer
2020-08-17T18:03:30-0400
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n x & -2 & -1 &\\ \\ 0\\ & \\ 1\\ & 2\\ & \\ 3 \\\\ \\hline\n p(x) & 0.1 & a & 0.2 & 2a & 0.3 \\ & a\n\\end{array}"

(i)

"\\displaystyle\\sum_{x}p(x)=1""0.1+a+0.2+2a+0.3+a=1""4a=0.4""a=0.1"

"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n x & -2 & -1 &\\ \\ 0\\ & \\ 1\\ & 2\\ & \\ 3 \\\\ \\hline\n p(x) & 0.1 & 0.1 & 0.2 & 0.2 & 0.3 \\ & 0.1\n\\end{array}"

(ii)

"F(-2)=F(X\\leq-2)=p(-2)=0.1"


"F(-1)=F(X\\leq-1)=p(-2)+p(-1)="

"=0.1+0.1=0.2"

"F(0)=F(X\\leq0)=p(-2)+p(-1)+p(0)="

"=0.1+0.1+0.2=0.4"


"F(1)=F(X\\leq1)=p(-2)+p(-1)+p(0)+p(1)="

"=0.1+0.1+0.2+0.2=0.6"


"F(2)=F(X\\leq2)=p(-2)+p(-1)+p(0)+p(1)+p(2)="

"=0.1+0.1+0.2+0.2+0.3=0.9"


"F(3)=F(X\\leq3)=1"


"F(x) = \\begin{cases}\n 0 & \\ \\ \\ x<-2 \\\\\n 0.1 & -2\\leq x<-1 \\\\\n 0.2 & -1\\leq x<0 \\\\\n 0.4 &\\ \\ \\ 0\\leq x<1\\\\\n 0.6 & \\ \\ \\ 1\\leq x<2 \\\\\n 0.9 & \\ \\ \\ 2\\leq x<3\\\\\n 1 &\\ \\ \\ 3\\leq x \n\\end{cases}"

(iii)


"\\mu=E(X)=\\displaystyle\\sum_{x}x\\cdot p(x)"

"\\mu=E(X)=-2\\cdot0.1+(-1)\\cdot0.1+0\\cdot0.2+""+1\\cdot0.2+2\\cdot0.3+3\\cdot0.1=0.8"

"\\sigma^2=E(X^2)-\\mu^2"

"E(X^2)=(-2)^2\\cdot0.1+(-1)^2\\cdot0.1+(0)^2\\cdot0.2+""+(1)^2\\cdot0.2+(2)^2\\cdot0.3+(3)^2\\cdot0.1=2.8"

"\\sigma^2=2.8-(0.8)^2=2.16"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS