Question #129653
Define r.U and Mathematical expectation of a r.U. A discrete r.U. has the following probability distribution.
X : -2 -1 0 1 2 3
P(X) : 0.1 a 0.2 2a 0.3 a
Find i) The value of ‘a’,
ii) its distribution function F(X),
iii) Mean and variance of X.
1
Expert's answer
2020-08-17T18:03:30-0400
x21  0  1 2  3p(x)0.1a0.22a0.3 a\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} x & -2 & -1 &\ \ 0\ & \ 1\ & 2\ & \ 3 \\ \hline p(x) & 0.1 & a & 0.2 & 2a & 0.3 \ & a \end{array}

(i)

xp(x)=1\displaystyle\sum_{x}p(x)=10.1+a+0.2+2a+0.3+a=10.1+a+0.2+2a+0.3+a=14a=0.44a=0.4a=0.1a=0.1

x21  0  1 2  3p(x)0.10.10.20.20.3 0.1\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} x & -2 & -1 &\ \ 0\ & \ 1\ & 2\ & \ 3 \\ \hline p(x) & 0.1 & 0.1 & 0.2 & 0.2 & 0.3 \ & 0.1 \end{array}

(ii)

F(2)=F(X2)=p(2)=0.1F(-2)=F(X\leq-2)=p(-2)=0.1


F(1)=F(X1)=p(2)+p(1)=F(-1)=F(X\leq-1)=p(-2)+p(-1)=

=0.1+0.1=0.2=0.1+0.1=0.2

F(0)=F(X0)=p(2)+p(1)+p(0)=F(0)=F(X\leq0)=p(-2)+p(-1)+p(0)=

=0.1+0.1+0.2=0.4=0.1+0.1+0.2=0.4


F(1)=F(X1)=p(2)+p(1)+p(0)+p(1)=F(1)=F(X\leq1)=p(-2)+p(-1)+p(0)+p(1)=

=0.1+0.1+0.2+0.2=0.6=0.1+0.1+0.2+0.2=0.6


F(2)=F(X2)=p(2)+p(1)+p(0)+p(1)+p(2)=F(2)=F(X\leq2)=p(-2)+p(-1)+p(0)+p(1)+p(2)=

=0.1+0.1+0.2+0.2+0.3=0.9=0.1+0.1+0.2+0.2+0.3=0.9


F(3)=F(X3)=1F(3)=F(X\leq3)=1


F(x)={0   x<20.12x<10.21x<00.4   0x<10.6   1x<20.9   2x<31   3xF(x) = \begin{cases} 0 & \ \ \ x<-2 \\ 0.1 & -2\leq x<-1 \\ 0.2 & -1\leq x<0 \\ 0.4 &\ \ \ 0\leq x<1\\ 0.6 & \ \ \ 1\leq x<2 \\ 0.9 & \ \ \ 2\leq x<3\\ 1 &\ \ \ 3\leq x \end{cases}

(iii)


μ=E(X)=xxp(x)\mu=E(X)=\displaystyle\sum_{x}x\cdot p(x)

μ=E(X)=20.1+(1)0.1+00.2+\mu=E(X)=-2\cdot0.1+(-1)\cdot0.1+0\cdot0.2++10.2+20.3+30.1=0.8+1\cdot0.2+2\cdot0.3+3\cdot0.1=0.8

σ2=E(X2)μ2\sigma^2=E(X^2)-\mu^2

E(X2)=(2)20.1+(1)20.1+(0)20.2+E(X^2)=(-2)^2\cdot0.1+(-1)^2\cdot0.1+(0)^2\cdot0.2++(1)20.2+(2)20.3+(3)20.1=2.8+(1)^2\cdot0.2+(2)^2\cdot0.3+(3)^2\cdot0.1=2.8

σ2=2.8(0.8)2=2.16\sigma^2=2.8-(0.8)^2=2.16


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS