Answer to Question #129652 in Statistics and Probability for Gazal

Question #129652
A continuous r.U.X has the following probability density function
F(X) = 20e to the power -20x ; X>0
= 0 ; 0 otherwise
Find i) Mean of X, ii) P(X < 1000), iii) P(X>3000)
1
Expert's answer
2020-08-17T18:07:05-0400

"X\\in \\Gamma(\\lambda)\\text{ (exponential random variable)}.\\\\\n\\text{We have } \\lambda=20.\\text{ So (i) mean of } X\\ M(X)=\\frac{1}{\\lambda}=\\frac{1}{20}.\\\\\n(ii)\\text{ First we find the distribution function of } X\\ F(x).\\\\\nF(x)=\\int_{-\\infty}^xf(t)dt\\\\\n\\int_0^x20e^{-20t}dt=(20\\cdot (-\\frac{1}{20})e^{-20t})_0^x=1-e^{-20x}\\\\\nF(x)=1-e^{-20x},\\ x>0\\\\\nF(x)=0,\\text{ otherwise}.\\\\\nP(X<1000)=F(1000)=1-e^{-20\\cdot 1000}\\approx 1.\\\\\n(iii) P(X>3000)=1-P(X\\leq 3000)=1-(1-e^{20\\cdot 3000})\\approx 0."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS