"X\\in \\Gamma(\\lambda)\\text{ (exponential random variable)}.\\\\\n\\text{We have } \\lambda=20.\\text{ So (i) mean of } X\\ M(X)=\\frac{1}{\\lambda}=\\frac{1}{20}.\\\\\n(ii)\\text{ First we find the distribution function of } X\\ F(x).\\\\\nF(x)=\\int_{-\\infty}^xf(t)dt\\\\\n\\int_0^x20e^{-20t}dt=(20\\cdot (-\\frac{1}{20})e^{-20t})_0^x=1-e^{-20x}\\\\\nF(x)=1-e^{-20x},\\ x>0\\\\\nF(x)=0,\\text{ otherwise}.\\\\\nP(X<1000)=F(1000)=1-e^{-20\\cdot 1000}\\approx 1.\\\\\n(iii) P(X>3000)=1-P(X\\leq 3000)=1-(1-e^{20\\cdot 3000})\\approx 0."
Comments
Leave a comment