Solution a)
P(x0)+P(x1)+P(x2)+P(x3)+P(x4)+P(x5)=1
P(x)=101 for x = 0
P(0)=101
P(x)=10kx for x = 1, 2, 3
P(1<=x<=3)=10k+102k+103k=106k
P(x)=k(6−x) for x = 4, 5
P(4<=x<=5)=k(6−4)+k(6−5)=3k
1=101+106k+3k
1−101=109=106k+30k=1036k
(9∗10)=(36k∗10)
Answer:
K=36090=0.25
Solution b)
Part i) 3 visits in 1 hour
P(x=3)=100.25x=100.25∗3=0.075
Answer: 0.075
Part ii) less than 2 visits in 1 hour
P((x=0orx=1)=101+100.25=0.125
Answer: 0.125
Part iii) more than 6 visits in 2 hours
Let x be the visits in the first hour and y be visits in the second hour
Max(x+y)=10
Min(x+y)=7
P(x+y>6)=P(x+y=7orx+y=8orx+y=9orx+y=10orx+y=11orx+y=12)
P(x+y=7)=P(x=5andy=2)+P(x=4andy=3)+P(x=3andy=4)+P(x=2andy=5)
=(0.25(6−5)∗100.25∗2+0.25(6−4)∗100.25∗3+100.25∗3∗0.25(6−4)+100.25∗2∗(0.25(6−5)
= 0.1
P(x+y=8)=P(x=5andy=3)+P(x=4andy=4)+P(x=3andy=5)
=(0.25(6−5)∗100.25∗3+0.25(6−4)∗0.25(6−4)+100.25∗3∗(0.25(6−5)
= 0.2875
P(x+y=9)=P(x=5andy=4)+P(x=4andy=5)
=(0.25(6−5)∗(0.25(6−4)+(0.25(6−4)∗(0.25(6−5)
= 0.125
P(x+y=10)=P(x=5andy=5)
=(0.25(6−5)∗(0.25(6−5)
= 0.0625
P(x+y=11)=0
P(x+y=12)=0
P(x+y>6)=0.1+0.2875+0.125+0.0625
Answer: 0.575
Part c) Probability of having less than 253 visits in 100 hours
Average visits per hour (x) = 100253 = 2.53
Expectation of x = μ=∑xp(x)
X px xpx p(x) * (x-\mu)^2
0 101 0 1.296
1 100.25 0.025 0.169
2 100.5 0.1 0.128
3 100.75 0.225 0.027
4 0.5 2 0.08
5 0.25 1.25 0.49
μ=0+0.025+0.1+0.225+2+1.25=3.6
Var(x)=∑p(x)∗(x−μ)2=2.433
σ=2.433=1.5598
Zvalue=sdx−μ=1.55982.53−3.6=−0.686
At z value =−0.686 ,p=0.2464
Answer: 0.2464
Comments