Question #127870
Suppose x is a normally distributed random variable with μ = 50 and Ϭ = 3. Find a value of the random variable, call it x0, such that a. P(x ≤ x0) = 0.8413 b. P(x > x0) = 0.25 c. P(x > x0) = 0.95 d. P(41 ≤ x < x0) = 0.8630 e. 10% of the values of x are less than x0. f. 1% of the values of x are greater than x0.
1
Expert's answer
2020-07-29T14:44:00-0400
xN(μ,σ2)x\sim N(\mu, \sigma^2)

Given μ=50,σ=3\mu=50, \sigma=3

a.

P(xx0)=0.8413P(x\leq x_0)=0.8413

P(xx0)=P(zz0)=0.8413P(x\leq x_0)=P(z\leq z_0 )=0.8413

z0=0.999815=x0μσz_0=0.999815={x_0-\mu \over \sigma}

x0=3(0.999815)+5053x_0=3(0.999815)+50\approx53

b.

P(x>x0)=0.25P(x>x_0)=0.25

P(xx0)=1P(x>x0)=10.25=0.75P(x\leq x_0)=1-P(x>x_0)=1-0.25=0.75

P(xx0)=P(zz0)=0.75P(x\leq x_0)=P(z\leq z_0 )=0.75

z0=0.674490=x0μσz_0=0.674490={x_0-\mu \over \sigma}

x0=3(0.674490)+5052x_0=3(0.674490)+50\approx52

c.


P(x>x0)=0.95P(x>x_0)=0.95

P(xx0)=1P(x>x0)=10.95=0.05P(x\leq x_0)=1-P(x>x_0)=1-0.95=0.05

P(xx0)=P(zz0)=0.05P(x\leq x_0)=P(z\leq z_0 )=0.05

z0=1.645=x0μσz_0=-1.645={x_0-\mu \over \sigma}

x0=3(1.645)+5045x_0=3(-1.645)+50\approx45

d.


P(41x<x0)=P(x<x0)P(x41)=P(41\leq x< x_0)=P(x<x_0)-P(x\leq 41)=

=P(z<z0)P(z41503)==P(z<z_0)-P(z\leq{41-50 \over 3})=

=P(z<z0)P(z3)==P(z<z_0)-P(z\leq-3)=

=P(z<z0)0.00135=0.8630=P(z<z_0)-0.00135=0.8630

P(z<z0)=0.86435P(z<z_0)=0.86435

z0=1.1=x0μσz_0=1.1={x_0-\mu \over \sigma}

x0=3(1.1)+5053.3x_0=3(1.1)+50\approx53.3

e.


P(x<x0)=0.1P(x< x_0)=0.1

P(x<x0)=P(z<z0)=0.1P(x< x_0)=P(z<z_0)=0.1

z0=1.28155=x0μσz_0=-1.28155={x_0-\mu \over \sigma}

x0=3(1.28155)+5046.155x_0=3(-1.28155)+50\approx46.155

f.


P(x>x0)=0.01P(x>x_0)=0.01

P(xx0)=1P(x>x0)=10.01=0.99P(x\leq x_0)=1-P(x>x_0)=1-0.01=0.99

P(xx0)=P(zz0)=0.99P(x\leq x_0)=P(z\leq z_0 )=0.99

z0=2.326=x0μσz_0=2.326={x_0-\mu \over \sigma}

x0=3(2.326)+5056.978x_0=3(2.326)+50\approx56.978


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
05.03.21, 22:11

Dear Tristan, you can use a statistical software which computes quantiles of distributions. You also can use statistical tables of the cumulative distribution function of the standard normal distribution.

Tristan
05.03.21, 19:22

Where did you get 0.674490 on b ? is there an equation or do I use my table?

LATEST TUTORIALS
APPROVED BY CLIENTS