Given "\\mu=50, \\sigma=3"
a.
"P(x\\leq x_0)=0.8413""P(x\\leq x_0)=P(z\\leq z_0 )=0.8413"
"z_0=0.999815={x_0-\\mu \\over \\sigma}"
"x_0=3(0.999815)+50\\approx53"
b.
"P(x>x_0)=0.25""P(x\\leq x_0)=1-P(x>x_0)=1-0.25=0.75"
"P(x\\leq x_0)=P(z\\leq z_0 )=0.75"
"z_0=0.674490={x_0-\\mu \\over \\sigma}"
"x_0=3(0.674490)+50\\approx52"
c.
"P(x\\leq x_0)=1-P(x>x_0)=1-0.95=0.05"
"P(x\\leq x_0)=P(z\\leq z_0 )=0.05"
"z_0=-1.645={x_0-\\mu \\over \\sigma}"
"x_0=3(-1.645)+50\\approx45"
d.
"=P(z<z_0)-P(z\\leq{41-50 \\over 3})="
"=P(z<z_0)-P(z\\leq-3)="
"=P(z<z_0)-0.00135=0.8630"
"P(z<z_0)=0.86435"
"z_0=1.1={x_0-\\mu \\over \\sigma}"
"x_0=3(1.1)+50\\approx53.3"
e.
"P(x< x_0)=P(z<z_0)=0.1"
"z_0=-1.28155={x_0-\\mu \\over \\sigma}"
"x_0=3(-1.28155)+50\\approx46.155"
f.
"P(x\\leq x_0)=1-P(x>x_0)=1-0.01=0.99"
"P(x\\leq x_0)=P(z\\leq z_0 )=0.99"
"z_0=2.326={x_0-\\mu \\over \\sigma}"
"x_0=3(2.326)+50\\approx56.978"
Comments
Dear Tristan, you can use a statistical software which computes quantiles of distributions. You also can use statistical tables of the cumulative distribution function of the standard normal distribution.
Where did you get 0.674490 on b ? is there an equation or do I use my table?
Leave a comment