x∼N(μ,σ2) Given μ=50,σ=3
a.
P(x≤x0)=0.8413
P(x≤x0)=P(z≤z0)=0.8413
z0=0.999815=σx0−μ
x0=3(0.999815)+50≈53 b.
P(x>x0)=0.25
P(x≤x0)=1−P(x>x0)=1−0.25=0.75
P(x≤x0)=P(z≤z0)=0.75
z0=0.674490=σx0−μ
x0=3(0.674490)+50≈52 c.
P(x>x0)=0.95
P(x≤x0)=1−P(x>x0)=1−0.95=0.05
P(x≤x0)=P(z≤z0)=0.05
z0=−1.645=σx0−μ
x0=3(−1.645)+50≈45
d.
P(41≤x<x0)=P(x<x0)−P(x≤41)=
=P(z<z0)−P(z≤341−50)=
=P(z<z0)−P(z≤−3)=
=P(z<z0)−0.00135=0.8630
P(z<z0)=0.86435
z0=1.1=σx0−μ
x0=3(1.1)+50≈53.3 e.
P(x<x0)=0.1
P(x<x0)=P(z<z0)=0.1
z0=−1.28155=σx0−μ
x0=3(−1.28155)+50≈46.155
f.
P(x>x0)=0.01
P(x≤x0)=1−P(x>x0)=1−0.01=0.99
P(x≤x0)=P(z≤z0)=0.99
z0=2.326=σx0−μ
x0=3(2.326)+50≈56.978
Comments
Dear Tristan, you can use a statistical software which computes quantiles of distributions. You also can use statistical tables of the cumulative distribution function of the standard normal distribution.
Where did you get 0.674490 on b ? is there an equation or do I use my table?