Answer to Question #127771 in Statistics and Probability for Jack

Question #127771

The number of visits to a website in one hour has the following probability mass function


{1/10 , π‘₯ = 0

𝑝(x)= { π‘˜π‘₯/10 , π‘₯ = 1,2,3

{ π‘˜(6βˆ’π‘₯)/15 , π‘₯ = 4,5



a) Determine the value of π‘˜.


With the value of π‘˜ obtained:


b) Find the probability of having

i) 3 visits in one hour.

ii) less than 2 visits in one hour.

iii) more than 6 visits in two hours.

c) By using central limit theorem, estimate the probability of having less than 253 visits in 100 hours.


1
Expert's answer
2020-08-14T17:34:27-0400

Solution:

a)

The sum of all probability is 1.

So,

P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=1.

1/10+k/10+2k/10+3k/10+2k/15+k/15=1.

1/10+3k/5+k/5=1

4k/5=9/10

k=9/8.

So,

P(X=0)=1/10,

P(X=1)=9/80,

P(X=2)=9/40,

P(X=3)=27/80,

P(X=4)=3/20,

P(X=5)=3/40.

b)

i) P(X=3)=27/80,

The probability of Β 3 visits in one hour is equal to 27/80.

ii) P(X<2)=P(X=0)+P(X=1)=1/10+9/80=17/80,

The probability of Β event that less than 2 visits in one hour is equal to 17/80.

iii) k1+k2>6:

(k1,k2)=(2,5),(3,4),(3,5),(4,3)(4,4),(4,5),(5,5)

P(X1+X2>6)=P(X1=2,X2=5)+P(X1=3,X2=4)+P(X1=3,X2=5)+P(X1=4,X2=3)+P(X1=4,X2=4)+P(X1=4,X2=5)+P(X1=5,X2=5)

P(X1+X2>6)=(9/40)(3/40)+(27/80)(3/20)+(27/80)(3/40)+(3/20)(27/80)+(3/20)(3/20)+(3/20)(3/40)+(3/40)(3/40)=117/640

The probability of Β event that more than 6 visits in two housr is equal to 117/640.


c) "\\mu=0\\cdot P(X=0)+1\\cdot P(X=1)+2\\cdot P(X=2)+3\\cdot P(X=3)+4\\cdot P(X=4)+5\\cdot P(X=5)=0\\cdot 1\/10+1\\cdot 9\/80+2\\cdot 9\/40+3\\cdot 27\/80+4\\cdot 3\/20+5\\cdot 3\/40=51\/20."

"\\mu=51\/20."

"\\sigma^2=E[X^2]-\\mu^2"

"E[X^2]=0\\cdot P(X=0)+1\\cdot P(X=1)+4\\cdot P(X=2)+9\\cdot P(X=3)+16\\cdot P(X=4)+25\\cdot P(X=5)=0\\cdot 1\/10+1\\cdot 9\/80+4\\cdot 9\/40+9\\cdot 27\/80+16\\cdot 3\/20+25\\cdot 3\/40=333\/40."

"\\sigma^2=333\/40-(51\/20)^2=729\/400"

"\\sigma=\\sqrt{729\/400}=27\/20."

"n=100"

"\\beta=(253-n\\cdot\\mu)\/(\\sigma\\cdot n^{1\/2})"

"\\beta=(253-100\\cdot\\mu)\/(10\\sigma)=-4\/27"

"P(S_{n}<253)=P((S_{n}-n\\cdot\\mu)\/(\\sigma\\cdot n^{1\/2})<(253-n\\cdot\\mu)\/(\\sigma\\cdot n^{1\/2}))"


"P(S_{n}<253)=P((S_{n}-n\\cdot\\mu)\/(\\sigma\\cdot n^{1\/2})<-4\/27)=\\Phi(-4\/27)"

"P(S_{100}<253)=\\Phi(-4\/27)"

"\\Phi(-4\/27)\\approx0.4411" (Here we use Wolfram Alpha)


The probability of having less than 253 visits in 100 hours is approximately equal to 0.4411.








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS