Let "X" be the head-injury rating: "X\\sim N(\\mu, \\sigma^2)." Then "Z=\\dfrac{X-\\mu}{\\sigma}\\sim N(0, 1)"
Given "N=605, \\sigma=185."
a.
"=P(Z<\\dfrac{700-605}{185})-P(Z\\leq\\dfrac{500-605}{185})\\approx"
"\\approx P(Z<0.513514)-P(Z\\leq-0.567568)\\approx"
"\\approx0.6962-0.2852=0.4110"
b.
"=P(Z<\\dfrac{500-605}{185})-P(Z\\leq\\dfrac{400-605}{185})\\approx"
"\\approx P(Z<-0.567568)-P(Z\\leq-1.108108)\\approx"
"\\approx0.2852-0.1339=0.1513"
c.
"\\approx P(Z<1.324324)\\approx0.9073"
d.
"=1-P(Z<\\dfrac{1000-605}{185})\\approx1-P(Z\\leq2.135135)\\approx"
"\\approx1-0.983625\\approx0.0164"
e.
"z_p\\approx-1.28155"
"P_{10}=\\mu+z_p\\times \\sigma"
"P_{10}=605+(-1.28155)\\times185\\approx368"
f.
"z_p\\approx1.645"
"P_{95}=\\mu+z_p\\times \\sigma"
"P_{95}=605+1.645\\times185\\approx909"
Comments
Leave a comment