"\\text{The confidence interval for the mean }\\\\\n\\text{can be calculated as follows:}\\\\\n \\bar x\u00b1Z_{\\frac{\u03b1}{2}}(\\frac{s}{\\sqrt{n}}),\\\\\n \\bar x=\\frac{\\sum x}{n}=\\frac{525}{50}=10.5\\\\\nS^{2}=\\frac{1}{n-1}(\\sum x^{2} -\\frac{(\\sum x)^{2}}{n})\\\\\nS^{2}=\\frac{1}{49}(5625 -\\frac{(525)^{2}}{50})\\approx 2.296\\\\\n s=\\sqrt{s^2}\\approx 1.52,\\\\\n Z_{\\frac{\u03b1}{2}}=Z_{\\frac{0.05}{2}}=Z_{0.025}=1.96,\\\\\n \n \\text{ the lower limit }= 10.5-1.96(\\frac{1.52}{\\sqrt{50}})\\\\\n\u224810.079,\\\\\n \\text{ the upper limit} = 10.5+1.96(\\frac{1.52}{\\sqrt{50}})\\\\\n\u224810.921,\\\\\n \\text{so the confidence interval is}\\\\ 10.079\\leq \\bar x \\leq 10.921\\\\"
Comments
Leave a comment