Table for Calculating Coefficient of Determination
We have, coefficient of determination = r2 ,where r is the correlation coefficient between x and y.
Now, r = n ∑ x y − ( ∑ x ) ( ∑ y ) ( n ∑ x 2 − ( ∑ x ) 2 ) ( n ∑ y 2 − ( ∑ y ) 2 ) r=\frac{n\sum xy-(\sum x)(\sum y)}{\sqrt(n\sum x^2-(\sum x)^2)(n\sum y^2-(\sum y)^2)} r = ( n ∑ x 2 − ( ∑ x ) 2 ) ( n ∑ y 2 − ( ∑ y ) 2 ) n ∑ x y − ( ∑ x ) ( ∑ y )
Here, n = 10 , ∑ x = 47.1 , ∑ y = 104 , ∑ x 2 = 328.99 , ∑ y 2 = 1239 , ∑ x y = 616.24 n=10,\sum x =47.1, \sum y=104, \sum x^2=328.99, \sum y^2=1239, \sum xy=616.24 n = 10 , ∑ x = 47.1 , ∑ y = 104 , ∑ x 2 = 328.99 , ∑ y 2 = 1239 , ∑ x y = 616.24
Applying the formula,
r = 10 × 616.24 − 47.1 × 104 ( 10 × 328.99 − ( 47.1 ) 2 ) ( 10 × 1239 − ( 104 ) 2 ) r=\frac{10\times 616.24-47.1\times104}{\sqrt(10\times328.99-(47.1)^2)(10\times1239-(104)^2)} r = ( 10 × 328.99 − ( 47.1 ) 2 ) ( 10 × 1239 − ( 104 ) 2 ) 10 × 616.24 − 47.1 × 104 = 0.9733 (rounded to 4 decimal places)
∴ \therefore ∴ Coefficient of determination = r2 = (0.9733)2 = 0.9473 (rounded to 4 decimal places)
Answer: The coefficient of determination of the given data is 0.9473.
Comments