1) Marginal pdf of X:
fX(x)=∫−∞∞fX,Y(x,y)dy.fX,Y(x,y) — joint pdf.fX,Y(x,y)=∂x∂y∂2F(x,y).F(x,y) — joint CDF.∂x∂F(x,y)=(1−e−y)e−x.∂x∂y∂2F(x,y)=e−(x+y).fX,Y(x,y)=e−(x+y)(x>0,y>0);0 (elsewhere).fX(x)=∫0∞e−(x+y)dy=e−x.So marginal pdf of X fX(x)=e−x(x>0);0 (elsewhere).Marginal pdf of Y (all the computations are symmetrical)fY(y)=e−y(y>0);0 (elsewhere).2)X and Y are independent because fX,Y(x,y)=fX(x)fY(y).P{1<x<3,1<y<2}=∫13∫12fX,Y(x,y)dydx=∫13∫12fX(x)fY(y)dydx=∫13∫12e−xe−ydydx=(e−2−e−1)(e−3−e−1)≈≈0.074.
Comments