We randomly choose two unts, without replacement. The order doesn't matter.
"\\begin{matrix}\n Sample & sample\\ mean, \\ \\bar{x} \\\\\n 1,2 & 1.5 \\\\\n 1,3 & 2\\\\\n 1,4 & 2.5 \\\\\n 1,5 & 3 \\\\\n 1,6 & 3.5 \\\\\n 2,3 & 2.5 \\\\\n 2,4 & 3 \\\\\n 2,5 & 3.5 \\\\\n 2,6 & 4\\\\\n 3,4 & 3.5 \\\\\n 3,5 & 4 \\\\\n 3,6 & 4.5 \\\\\n 4,5 & 4.5 \\\\\n 4,6 & 5 \\\\\n 5,6 & 5.5\n\\end{matrix}"
"\\begin{matrix}\n \\bar{x} & f & probability \\\\\n 1.5 & 1 & 1\/15 \\\\\n 2.0 & 1 & 1\/15\\\\\n 2.5 & 2 & 2\/15\\\\\n 3.0 & 2 & 2\/15 \\\\\n 3.5 & 3 & 1\/5\\\\\n 4.0 & 2 & 2\/15\\\\\n 4.5 & 2 & 2\/15\\\\\n 5.0 & 1 & 1\/15\\\\\n 5.5 & 1 & 1\/15\\\\\n \n\\end{matrix}"
"\\mu_{\\bar{x}}=1.5({1\\over15})+2.0({1\\over15})+2.5({2\\over15})+3.0({2\\over15})+3.5({1\\over5})+"
"+4.0({2\\over15})+4.5({2\\over15})+5.0({1\\over15})+5.5({1\\over5})=3.5"
"(1.5)^2({1\\over15})+(2.0)^2({1\\over15})+(2.5)^2({2\\over15})+(3.0)^2({2\\over15})+(3.5)^2({1\\over5})+"
"+(4.0)^2({2\\over15})+(4.5)^2({2\\over15})+(5.0)^2({1\\over15})+(5.5)^2({1\\over5})="
"={161\\over 12}"
"Var(\\bar{x})=\\sigma_{\\bar{x}}^2={161\\over 12}-(3.5)^2={7\\over 6}\\approx1.166667"
Comments
Leave a comment