"1) P\\{\\xi>80\\}=1-P\\{\\xi\\leq 80\\}=1-F(80)=\\\\\n=1-\\frac{1}{\\sqrt{2\\pi}(5.9)}\\int_{-\\infty}^{80}e^{-\\frac{(x-75)^2}{2(5.9)^2}}dx=1-\\Phi(\\frac{80-75}{5.9})\\approx\\\\\n\\approx1-\\Phi(0.847)\\approx 1-0.8015=0.1985\\text{ where }\\\\\n\\Phi(x)=\\frac{1}{\\sqrt{2\\pi}}\\int_{-\\infty}^{x}e^{-\\frac{t^2}{2}}dx.\\\\\n2) P\\{72<\\xi<82\\}=F(82)-F(72)=\\Phi(\\frac{82-75}{5.9})-\\Phi(\\frac{72-75}{5.9})\\approx\\\\\n\\approx\\Phi(1.186)-\\Phi(-0.508)\\approx 0.8822-0.3057=0.5765.\\\\\n3) (0.5765)\\cdot 38=21.907.\\\\\n\\text{Here we used the fact that }\\mu_{\\overline{p}}=p.\\\\\n\\text{The answer is}\\approx 21.\\\\\n4) F(x)=\\frac{1}{\\sqrt{2\\pi}(5.9)}\\int_{-\\infty}^{x}e^{-\\frac{(t-75)^2}{2(5.9)^2}}dt\\\\\nF(x)=1-0.25=0.75.\\\\\n\\text{We should find x}.\\\\\n\\text{Substitution: } z=\\frac{t-75}{5.9}\\\\\n\\Phi(0.75)=0.7734\\\\\n\\frac{x-75}{5.9}=0.7734\\\\\nx\\approx 79.56.\\\\\nB)\\text{Let } \\xi \\text{ is number of stolen cars during some period of time}.\\\\\n\\text{Then }\\xi \\in \\text{Poisson }(\\lambda)\\text{ where }\\lambda \\text{ is rate}.\\\\\n\\text{We have } \\xi \\in \\text{Poisson }(3), n=1.\\\\\n\\text{Hence }D_\\xi=\\lambda=3, \\sigma_\\xi=\\sqrt{D_\\xi}=\\sqrt{3}\\approx 1.73.\\\\"
The probability that at least 5 car thefts will occur during a two month period
We have "\\lambda=6, n=2."
"P=1-(P\\{\\xi=0\\}+P\\{\\xi=1\\}+P\\{\\xi=2\\}+P\\{\\xi=3\\}+P\\{\\xi=4\\}).\\\\\nP\\{\\xi=0\\}=\\frac{6^0}{0!}e^{-6}=e^{-6}.\\\\\nP\\{\\xi=1\\}=\\frac{6^1}{1!}e^{-6}=6e^{-6}.\\\\\nP\\{\\xi=2\\}=\\frac{6^2}{2!}e^{-6}=18e^{-6}.\\\\\nP\\{\\xi=3\\}=\\frac{6^3}{3!}e^{-6}=36e^{-6}.\\\\\nP\\{\\xi=4\\}=\\frac{6^4}{4!}e^{-6}=54e^{-6}.\\\\\nP\\approx 0.715."
Comments
Leave a comment