Question #108232
The number of emails that I get in one hour has such density function:
x 2 1 4 5 3 6 and more 0
f(x) 0.17 0.23 0.08 0.04 0.14 0.02 ?
a) find the probability, that there will be no letter for the next hour;
b) find cumulative distributional function.
1
Expert's answer
2020-04-10T18:26:51-0400

x0123456 and moref(x)a0.230.170.140.080.040.02\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c:c} x & 0 & 1 & 2 & 3 & 4 & 5 & 6\text{ and more} \\ \hline f(x) & a & 0.23 & 0.17& 0.14 & 0.08 & 0.04 & 0.02 \\ \end{array}

a) xP(X=x)=1    a+0.23+0.17+0.14+0.08+0.04+0.02=1    a=0.32\sum \limits _{x} P(X=x)=1 \ \ \Rightarrow \ \ a+0.23+0.17+0.14+0.08+0.04+0.02=1 \ \ \Rightarrow \ \ a=0.32

Answer: the probability, that there will be no letter for the next hour, is equal to 0.32


b)

The cumulative distribution function is given by F(x)=P(Xx)F(x)=P(X\leq x)

P(Xx)=yxP(X=y)=yx1P(X=y)+P(X=x)=P(Xx1)+P(X=x)P(X\leq x)=\sum \limits _{y\leq x}P(X=y)= \sum \limits _{y\leq x-1}P(X=y)+P(X=x)=P(X\leq x-1)+P(X=x)

F(x)=F(x1)+P(X=x)  (for x>0)F(x)=F(x-1)+P(X=x) \ \ (\text{for }x>0)

Now we can calculate F(x):F(x):

F(0)=0.32F(0)=0.32

F(1)=0.32+0.23=0.55F(1)=0.32+0.23=0.55

F(2)=0.55+0.17=0.72F(2)=0.55+0.17=0.72

F(3)=0.72+0.14=0.86F(3)=0.72+0.14=0.86

F(4)=0.86+0.08=0.94F(4)=0.86+0.08=0.94

F(5)=0.94+0.04=0.98F(5)=0.94+0.04=0.98

F(6 and more)=0.98+0.02=1F(6 \text{ and more}) =0.98+0.02=1

x0123456 and moreF(x)0.320.550.720.860.940.981\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c:c} x & 0 & 1 & 2 & 3 & 4 & 5 & 6\text{ and more} \\ \hline F(x) & 0.32 & 0.55 & 0.72& 0.86 & 0.94 & 0.98 & 1 \\ \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS