"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c:c}\n x & 0 & 1 & 2 & 3 & 4 & 5 & 6\\text{ and more} \\\\ \\hline\n f(x) & a & 0.23 & 0.17& 0.14 & 0.08 & 0.04 & 0.02 \\\\\n \n\\end{array}"
a) "\\sum \\limits _{x} P(X=x)=1 \\ \\ \\Rightarrow \\ \\ a+0.23+0.17+0.14+0.08+0.04+0.02=1 \\ \\ \\Rightarrow \\ \\ a=0.32"
Answer: the probability, that there will be no letter for the next hour, is equal to 0.32
b)
The cumulative distribution function is given by "F(x)=P(X\\leq x)"
"P(X\\leq x)=\\sum \\limits _{y\\leq x}P(X=y)= \\sum \\limits _{y\\leq x-1}P(X=y)+P(X=x)=P(X\\leq x-1)+P(X=x)"
"F(x)=F(x-1)+P(X=x) \\ \\ (\\text{for }x>0)"
Now we can calculate "F(x):"
"F(0)=0.32"
"F(1)=0.32+0.23=0.55"
"F(2)=0.55+0.17=0.72"
"F(3)=0.72+0.14=0.86"
"F(4)=0.86+0.08=0.94"
"F(5)=0.94+0.04=0.98"
"F(6 \\text{ and more}) =0.98+0.02=1"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c:c}\n x & 0 & 1 & 2 & 3 & 4 & 5 & 6\\text{ and more} \\\\ \\hline\n F(x) & 0.32 & 0.55 & 0.72& 0.86 & 0.94 & 0.98 & 1 \\\\\n \n\\end{array}"
Comments
Leave a comment