"p=\\frac{1}{3}, \\, q=1-p," and "n=4"
(a). "f(x)=\\binom{n}{x}\u00d7p^x\u00d7q^{n-x}, x=0,1,2,3,4,"
"F(x,i)=\\sum_{i}^{x}\\binom{n}{i}p^iq^{n-i}"
b. "E(x)=np=\\frac{4}{3}=1\\frac{1}{3}"
"Var(x)=npq=\\frac{4}{3}\u00d7\\frac{2}{3}=\\frac{8}{9}"
c. from a, we have "f(2)=\\binom{4}{2}\u00d7(\\frac{1}{3})^2\u00d7(\\frac{2}{3})^{4-2}"
"=6\u00d7\\frac{1}{9}\u00d7\\frac{4}{9}=\\frac{24}{81}"
Comments
Leave a comment