Question #108228
A coin is tossed 3 times. Let Z is a number of tails. Find:
a) a probability density function f(z);
b) a cumulative distributional function F(z);
c) a mean E(Z) and a variance D(Z).
1
Expert's answer
2020-04-07T17:13:54-0400

(a)

We can consider all outcomes for this experiment: {ttt,thh,hth,hht,tth,tht,htt,hhh}\{ttt, thh, hth, hht , tth, tht, htt, hhh\}

For Z=0: {hhh}Z=0 : \ \{hhh\}

Z=1: {thh,hth,hht}Z=1:\ \{thh, hth, hht\}

Z=2: {tth,tht,htt}Z=2: \ \{ tth, tht,htt \}

Z=3: {hhh}Z=3: \ \{hhh\}

Therefore, we have the probability distribution of ZZ :

z0123P(z)18383818\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} z & 0 & 1 & 2 & 3 \\ \hline P(z) & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{array}

Probability density function:



(b)

F(z)=P(Zz)F(z)=P(Z\leq z)

F(0)=P(Z0)=P(0)=18, F(1)=P(Z1)=P(0)+P(1)=12F(0)=P(Z\leq 0)=P(0)=\frac{1}{8}, \ F(1)=P(Z\leq1)=P(0)+P(1)=\frac{1}{2}

F(2)=P(Z2)=P(0)+P(1)+P(2)=78, F(3)=P(Z3)=1F(2)=P(Z\leq 2)=P(0)+P(1)+P(2)=\frac{7}{8}, \ F(3)=P(Z\leq 3)=1

F(z)={18, z=012, z=178, z=21, z=3F(z)=\begin{cases} \frac{1}{8}, \ z=0 \\ \frac{1}{2}, \ z=1 \\ \frac{7}{8}, \ z=2 \\ 1 , \ z=3 \end{cases}

(c)

Mean value is E(Z)=zP(z)=0×P(0)+1×P(1)+2×P(2)+3×P(3)=0+38+68+38=128=1.5E(Z)=\sum zP(z)=0\times P(0)+1\times P(1)+2\times P(2)+3\times P(3)=0+\frac{3}{8}+\frac{6}{8} +\frac{3}8=\frac{12}{8}=1.5


D2(Z)=[z2P(z)]E2(Z)=[02×P(0)+12×P(1)+22×P(2)+32×P(3)1.52=0+38+128+982.25=2482.25=0.75D^2(Z)=[\sum z^2 P(z)]-E^2(Z)=[0^2\times P(0)+1^2\times P(1)+2^2\times P(2)+3^2\times P(3)-1.5^2=0+\frac{3}{8}+\frac{12}{8}+\frac{9}{8}-2.25=\frac{24}{8}-2.25=0.75

Variance is D(z)=0.750.866D(z)=\sqrt{0.75}\approx 0.866


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS