A coin is tossed 3 times. Let Z is a number of tails. Find:
a) a probability density function f(z);
b) a cumulative distributional function F(z);
c) a mean E(Z) and a variance D(Z).
1
Expert's answer
2020-04-07T17:13:54-0400
(a)
We can consider all outcomes for this experiment: {ttt,thh,hth,hht,tth,tht,htt,hhh}
For Z=0:{hhh}
Z=1:{thh,hth,hht}
Z=2:{tth,tht,htt}
Z=3:{hhh}
Therefore, we have the probability distribution of Z :
zP(z)081183283381
Probability density function:
(b)
F(z)=P(Z≤z)
F(0)=P(Z≤0)=P(0)=81,F(1)=P(Z≤1)=P(0)+P(1)=21
F(2)=P(Z≤2)=P(0)+P(1)+P(2)=87,F(3)=P(Z≤3)=1
F(z)=⎩⎨⎧81,z=021,z=187,z=21,z=3
(c)
Mean value is E(Z)=∑zP(z)=0×P(0)+1×P(1)+2×P(2)+3×P(3)=0+83+86+83=812=1.5
Comments