(a)
We can consider all outcomes for this experiment: "\\{ttt, thh, hth, hht \n, tth, tht, htt, hhh\\}"
For "Z=0 : \\ \\{hhh\\}"
"Z=1:\\ \\{thh, hth, hht\\}"
"Z=2: \\ \\{ tth, tht,htt \\}"
"Z=3: \\ \\{hhh\\}"
Therefore, we have the probability distribution of "Z" :
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n z & 0 & 1 & 2 & 3 \\\\ \\hline\n P(z) & \\frac{1}{8} & \\frac{3}{8} & \\frac{3}{8} & \\frac{1}{8}\n\\end{array}"
Probability density function:
(b)
"F(z)=P(Z\\leq z)"
"F(0)=P(Z\\leq 0)=P(0)=\\frac{1}{8}, \\ F(1)=P(Z\\leq1)=P(0)+P(1)=\\frac{1}{2}"
"F(2)=P(Z\\leq 2)=P(0)+P(1)+P(2)=\\frac{7}{8}, \\ F(3)=P(Z\\leq 3)=1"
"F(z)=\\begin{cases}\n\\frac{1}{8}, \\ z=0\n\\\\ \\frac{1}{2}, \\ z=1\n\\\\ \\frac{7}{8}, \\ z=2\n\\\\ 1 , \\ z=3\n\\end{cases}"
(c)
Mean value is "E(Z)=\\sum zP(z)=0\\times P(0)+1\\times P(1)+2\\times P(2)+3\\times P(3)=0+\\frac{3}{8}+\\frac{6}{8} +\\frac{3}8=\\frac{12}{8}=1.5"
"D^2(Z)=[\\sum z^2 P(z)]-E^2(Z)=[0^2\\times P(0)+1^2\\times P(1)+2^2\\times P(2)+3^2\\times P(3)-1.5^2=0+\\frac{3}{8}+\\frac{12}{8}+\\frac{9}{8}-2.25=\\frac{24}{8}-2.25=0.75"
Variance is "D(z)=\\sqrt{0.75}\\approx 0.866"
Comments
Leave a comment