"a) pmf\\\\\nf(x)=P\\{X=x\\}=\\\\\n\\frac{C_{10}^4}{C_{30}^4}=0.0077, x=0\\\\\n\\frac{C_{10}^3 C_{20}^1}{C_{30}^4}=0.0876, x=1\\\\\n\\frac{C_{10}^2 C_{20}^2}{C_{30}^4}=0.312, x=2\\\\\n\\frac{C_{10}^1 C_{20}^3}{C_{30}^4}=0.416, x=3\\\\\n\\frac{C_{20}^4}{C_{30}^4}=0.1768, x=4."
"CDF\\\\\nF(x)=P\\{X\\leq x\\}=\\\\\n0, x<0\\\\\n0+0.0077=0.0077, 0\\leq x<1\\\\\n0.0077+0.0876=0.0953, 1\\leq x<2\\\\\n0.0953+0.312=0.4073, 2\\leq x<3\\\\\n0.4073+0.416=0.8233, 3\\leq x<4\\\\\n0.8233+0.1768\\approx 1, x\\geq 4."
"b) MX=2.6668" (sum of products of probabilities and values of random variable).
"DX=MX^2-(MX)^2\\\\\nMX^2=0^2\\cdot (0.0077)+1^2\\cdot (0.0876)+2^2\\cdot (0.312)+3^2\\cdot (0.416)+\\\\+\n4^2\\cdot(0.1768)=7.9084.\\\\\nDX=7.9084-(2.6668)^2=0.7966.\\\\\nc) P\\{X\\geq 2\\}=1-P\\{X<2\\}=1-0.0953=0.9047."
Comments
Leave a comment