Question #105058
1. For two given set of data, it is known that mean x = 10 and mean of y = 4. The gradient of the regression line y on x is 0.6. Find the equation of the regression line and estimate y when x = 1 (4mks)
2. A discrete random variable has the following distribution
x 1 2 3 4
f(x) k 2k 2/3k 1/3k
i). Determine the value of k (2mks)
ii). Find the expectation of x (2mks)
iii). Find the variance of x (3mks)

3. The arithmetic mean of 10 numbers is 4. When an eleventh number x is added, the overall mean is changed to 5. When a twelfth number y is added, the mean changes to 4. Determine the values of x and y. (5mks)

PROBABILITY
4. a). A manufacturer assures his customers that the probability of having defective items is 0.005. A sample of 1000 items was inspected. Find the probabilities of having the following outcomes.
i). only one is defective
ii). at most 2 defective
iii). more than 3 defective
1
Expert's answer
2020-03-13T15:20:20-0400

1. The line of regression of Y on X is given by Y=A+Bx,A=yˉBxˉY=A+Bx, A=\bar{y}-B\bar{x}

Given that xˉ=10,yˉ=4,B=0.6.\bar{x}=10, \bar{y}=4, B=0.6. Then


A=40.6(10)=2A=4-0.6(10)=-2

The line of regression of Y on X is


Y=2+0.6xY=-2+0.6x

Estimate YY when X=1X=1


Y=2+0.6(1)=1.4Y=-2+0.6(1)=-1.4

2. A discrete random variable has the following distribution 


x1234f(x)k2k23k13k\def\arraystretch{1.5} \begin{array}{c:c} x & 1 & 2 & 3 & 4 \\ \hline f(x) & k & 2k & \dfrac{2}{3}k & \dfrac{1}{3}k \end{array}

i). Determine the value of k


f(xi)=1\sum f(x_i)=1k+2k+23k+13k=1k+2k+\dfrac{2}{3}k+\dfrac{1}{3}k=1k=14k=\dfrac{1}{4}x1234f(x)141216112\def\arraystretch{1.5} \begin{array}{c:c} x & 1 & 2 & 3 & 4 \\ \hline f(x) & {1 \over 4} & {1 \over 2} & {1 \over 6}& {1 \over 12} \end{array}

ii). Find the expectation of x 


μ=E(X)=xif(xi)=\mu=E(X)=\sum x_if(x_i)==1(14)+2(12)+3(16)+4(112)=2512=1({1 \over 4})+2({1 \over 2})+3({1 \over 6})+4({1 \over 12})={25 \over 12}

iii). Find the variance of x


Var(X)=σ2=E(X2)μ2Var(X)=\sigma^2=E(X^2)-\mu^2

E(X)=xi2f(xi)=E(X)=\sum x_i^2f(x_i)==12(14)+22(12)+32(16)+42(112)=6112=1^2 ({1 \over 4})+2^2({1 \over 2})+3^2({1 \over 6})+4^2({1 \over 12})={61 \over 12}

Var(X)=σ2=6112(2512)2=107144Var(X)=\sigma^2={61 \over 12}-({25 \over 12})^2={107 \over 144}

3. The arithmetic mean of 10 numbers is 4. When an eleventh number x is added, the overall mean is changed to 5. When a twelfth number y is added, the mean changes to 4. Determine the values of x and y.

Given that μ10=4\mu_{10}=4


μ11=μ10(10)+x11=5\mu_{11}={\mu_{10}(10) +x\over 11}=54(10)+x11=5{4(10)+x\over 11}=5x=15x=15

μ11=5\mu_{11}=5


μ12=μ11(11)+y12=4\mu_{12}={\mu_{11}(11) +y\over 12}=45(11)+y12=4{5(11) +y\over 12}=4y=7y=-7

4. a) Let X=X= the number of defective items: XB(n,p).X\sim B(n, p).


P(X=x)=(nx)px(1p)nxP(X=x)=\binom{n}{x}p^x(1-p)^{n-x}

Given that n=1000,p=0.005.n=1000, p=0.005.

The mean value and standard deviation of a binomial random variable XX are

μ=np=1000(0.005)=5\mu=np=1000(0.005)=5

σ=np(1p)=1000(0.005)(10.005)=4.975\sigma=\sqrt{np(1-p)}=\sqrt{1000(0.005)(1-0.005)}=\sqrt{4.975}


Since the sample size nn  is very large and pp is small we may use Approximation of Binomial Distribution by a Poisson Distribution


P(X=x)=eμμxx!P(X=x)={e^{-\mu}\mu^x \over x!}

i). The probability of having only one defective item is


P(X=1)=(10001)0.0051(10.005)100010.033437P(X=1)=\binom{1000}{1}0.005^1(1-0.005)^{1000-1}\approx0.033437

P(X=1)=e5511!=5e50.033690P(X=1)={e^{-5}5^1 \over 1!}=5e^{-5}\approx0.033690

ii). The probability of having at most 2 defective items is


P(X2)=P(X=0)+P(X=1)+P(X=2)=P(X\leq2)=P(X=0)+P(X=1)+P(X=2)==(10000)0.0050(10.005)10000+(10001)0.0051(10.005)10001+=\binom{1000}{0}0.005^0(1-0.005)^{1000-0}+\binom{1000}{1}0.005^1(1-0.005)^{1000-1}++(10002)0.0052(10.005)100020.124020+\binom{1000}{2}0.005^2(1-0.005)^{1000-2}\approx0.124020

P(X2)=e5500!+e5511!+e5522!=372e50.124652P(X\leq2)={e^{-5}5^0 \over 0!}+{e^{-5}5^1 \over 1!}+{e^{-5}5^2 \over 2!}={37 \over 2}e^{-5}\approx0.124652

iii). The probability of having more than 3 defective items is


P(X>3)=1P(X3)=P(X>3)=1-P(X\leq3)==1P(X=0)P(X=1)P(X=2)=1-P(X=0)-P(X=1)-P(X=2)-P(X=3)=1(10000)0.0050(10.005)10000-P(X=3)=1-\binom{1000}{0}0.005^0(1-0.005)^{1000-0}-(10001)0.0051(10.005)10001(10002)0.0052(10.005)10002-\binom{1000}{1}0.005^1(1-0.005)^{1000-1}-\binom{1000}{2}0.005^2(1-0.005)^{1000-2}-(10003)0.0052(10.005)100030.735678-\binom{1000}{3}0.005^2(1-0.005)^{1000-3}\approx0.735678



P(X>3)=1e5500!e5511!e5522!e5533!P(X>3)=1-{e^{-5}5^0 \over 0!}-{e^{-5}5^1 \over 1!}-{e^{-5}5^2\over 2!}-{e^{-5}5^3 \over 3!}\approx0.734974\approx0.734974



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS