(i) There are 19 balls of which 6 are white, 4 are black and 9 are black.
Number of ways 3 balls can be drawn is "C^3_{19}" .
Number of ways 2 white balls can be drawn is "C^2_6".
Number of ways 1 not white ball can be drawn is "C^1_{13}."
"P(2\\; white)=\\frac{C^2_6*C^1_{13}}{C^3_{19}}=\\frac{6!*13!*3!*16!}{2!*4!*19!}=\\frac{65}{323}\\approx0.2012."
(ii) Number of ways 1 white ball can be drawn is "C^1_6".
Number of ways 1 red ball can be drawn is "C^1_4" .
Number of ways 1 black ball can be drawn is "C^1_9".
"P(one\\; of\\; each\\; color)=\\frac{C^1_6*C^1_4*C^1_9}{C^3_{19}}=\\frac{6!*4!*9!*3!*16!}{1!*5!*1!*3!*1!*8!*19!}=\\frac{72}{323}\\approx0.2229."
(iii) Number of ways 3 not red balls can be drawn is "C^3_{(19-4)}=C^3_{15}"
"P(none\\; red)=\\frac{C^3_{15}}{C^3_{19}}=\\frac{15!*3!*16!}{3!*12!*19!}=\\frac{91}{323}\\approx0.2817."
(iv) Number of ways 3 not white balls can be drawn is "C^3_{(19-6)}=C^3_{13}" ."P(at\\; least\\; 1\\; white)=1-P(no\\; white)=1-\\frac{C^3_{13}}{C^3_{19}}=1-\\frac{13!*3!*16!}{3!*10!*19!}=1-\\frac{286}{969}\\approx0.7049."
Comments
Leave a comment