Answer to Question #93339 in Real Analysis for Andy Reddy

Question #93339
Prove that lim (Xn)=0 if and only if lim(|Xn|)= 0. Give an example to show that the convergence of (|Xn|)= 0 need not imply the convergence of (Xn)= 0.
1
Expert's answer
2019-08-26T10:35:16-0400

"\\lim\\limits_{n\\to\\infty} X_n=0 \\leftrightarrow \\forall \\varepsilon>0 \\ \\exists N \\ \\forall n>N \\ |X_n-0|<\\varepsilon."

"\\lim\\limits_{n\\to\\infty} |X_n|=0 \\leftrightarrow \\forall \\varepsilon>0 \\ \\exists N \\ \\forall n>N \\ \\bigl||X_n|-0\\bigr|<\\varepsilon."

Since "|X_n-0|=\\bigl||X_n|-0\\bigr|" , we have "\\lim\\limits_{n\\to\\infty} X_n=0 \\Leftrightarrow \\lim\\limits_{n\\to\\infty} |X_n|=0" .

Consider sequence "X_n=(-1)^n." It is divergent one, but sequence "|X_n|=1" is convergent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog