"\\lim\\limits_{n\\to\\infty} X_n=0 \\leftrightarrow \\forall \\varepsilon>0 \\ \\exists N \\ \\forall n>N \\ |X_n-0|<\\varepsilon."
"\\lim\\limits_{n\\to\\infty} |X_n|=0 \\leftrightarrow \\forall \\varepsilon>0 \\ \\exists N \\ \\forall n>N \\ \\bigl||X_n|-0\\bigr|<\\varepsilon."
Since "|X_n-0|=\\bigl||X_n|-0\\bigr|" , we have "\\lim\\limits_{n\\to\\infty} X_n=0 \\Leftrightarrow \\lim\\limits_{n\\to\\infty} |X_n|=0" .
Consider sequence "X_n=(-1)^n." It is divergent one, but sequence "|X_n|=1" is convergent.
Comments
Leave a comment