The given definite integration is a special integration ,
"erf\\left( x \\right) = \\frac{1}{{\\sqrt \\pi }}\\int_{ - x}^x {{e^{ - {t^2}}}dt} = \\frac{2}{{\\sqrt \\pi }}\\int_{ 0}^x {{e^{ - {t^2}}}dt}\\\\\n\\int_{ - x}^x {{e^{ - {t^2}}}dt} = \\frac{{\\sqrt \\pi }}{2}\\int_{ - x}^x {\\frac{{2{e^{ - {t^2}}}}}{{\\sqrt \\pi }}dt}"Now, use this concept and our integration will be
"\\int_{ - \\infty }^\\infty {{e^{ - {x^2}}}} dx = \\frac{{\\sqrt \\pi }}{2}\\int_{ - \\infty }^\\infty {\\frac{{2{e^{ - {x^2}}}}}{{\\sqrt \\pi }}dx} \\\\\n = \\frac{{\\sqrt \\pi }}{2} \\cdot \\left[ {erf(x)} \\right]_{ - \\infty }^\\infty \\\\\n = \\frac{{\\sqrt \\pi }}{2} \\cdot 2\\\\\n = \\sqrt \\pi"Therefore, the option C is the right answer.
Comments
Leave a comment