The given definite integration is a special integration ,
e r f ( x ) = 1 π ∫ − x x e − t 2 d t = 2 π ∫ 0 x e − t 2 d t ∫ − x x e − t 2 d t = π 2 ∫ − x x 2 e − t 2 π d t erf\left( x \right) = \frac{1}{{\sqrt \pi }}\int_{ - x}^x {{e^{ - {t^2}}}dt} = \frac{2}{{\sqrt \pi }}\int_{ 0}^x {{e^{ - {t^2}}}dt}\\
\int_{ - x}^x {{e^{ - {t^2}}}dt} = \frac{{\sqrt \pi }}{2}\int_{ - x}^x {\frac{{2{e^{ - {t^2}}}}}{{\sqrt \pi }}dt} er f ( x ) = π 1 ∫ − x x e − t 2 d t = π 2 ∫ 0 x e − t 2 d t ∫ − x x e − t 2 d t = 2 π ∫ − x x π 2 e − t 2 d t
Now, use this concept and our integration will be
∫ − ∞ ∞ e − x 2 d x = π 2 ∫ − ∞ ∞ 2 e − x 2 π d x = π 2 ⋅ [ e r f ( x ) ] − ∞ ∞ = π 2 ⋅ 2 = π \int_{ - \infty }^\infty {{e^{ - {x^2}}}} dx = \frac{{\sqrt \pi }}{2}\int_{ - \infty }^\infty {\frac{{2{e^{ - {x^2}}}}}{{\sqrt \pi }}dx} \\
= \frac{{\sqrt \pi }}{2} \cdot \left[ {erf(x)} \right]_{ - \infty }^\infty \\
= \frac{{\sqrt \pi }}{2} \cdot 2\\
= \sqrt \pi ∫ − ∞ ∞ e − x 2 d x = 2 π ∫ − ∞ ∞ π 2 e − x 2 d x = 2 π ⋅ [ er f ( x ) ] − ∞ ∞ = 2 π ⋅ 2 = π Therefore, the option C is the right answer.
Comments