Answer to Question #91367 in Real Analysis for Sajid

Question #91367
Q. ∫_(-∞)^∞▒e^(〖-x〗^2 ) dx=?
a. π/2
b. π
c. √π
d. 2√π
1
Expert's answer
2019-07-09T11:51:49-0400

The given definite integration is a special integration ,

"erf\\left( x \\right) = \\frac{1}{{\\sqrt \\pi }}\\int_{ - x}^x {{e^{ - {t^2}}}dt} = \\frac{2}{{\\sqrt \\pi }}\\int_{ 0}^x {{e^{ - {t^2}}}dt}\\\\\n\\int_{ - x}^x {{e^{ - {t^2}}}dt} = \\frac{{\\sqrt \\pi }}{2}\\int_{ - x}^x {\\frac{{2{e^{ - {t^2}}}}}{{\\sqrt \\pi }}dt}"



Now, use this concept and our integration will be

"\\int_{ - \\infty }^\\infty {{e^{ - {x^2}}}} dx = \\frac{{\\sqrt \\pi }}{2}\\int_{ - \\infty }^\\infty {\\frac{{2{e^{ - {x^2}}}}}{{\\sqrt \\pi }}dx} \\\\\n = \\frac{{\\sqrt \\pi }}{2} \\cdot \\left[ {erf(x)} \\right]_{ - \\infty }^\\infty \\\\\n = \\frac{{\\sqrt \\pi }}{2} \\cdot 2\\\\\n = \\sqrt \\pi"

Therefore, the option C is the right answer.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog