Answer to Question #87458 in Real Analysis for Venerette

Question #87458
For each x ∈ R, let us denote by C(x) the least integer greater than or equal to x.
For example, C(1) = 1, C(−√2) = −1. In other words, C(x) is the unique integer
satisfying C(x) − 1 < x ≤ C(x).
(1) Draw the graph of the function C(x) for x ∈ [−2, 2].
(2) Prove that C(x) is continuous at all non-integer points of R.
(3) Prove that C(x) is discontinuous at all integer points of R.
1
Expert's answer
2019-04-03T13:00:53-0400

Let x be a real number. The ceiling function of x, denoted by x\lceil x\rceil, is the smallest integer that is larger than or equal to x.

For x[2,2]x\in[-2, 2]


x=2,f(x)=x=2x=-2, f(x)=\lceil x\rceil=-2

2<x1,f(x)=x=1-2\lt x \le-1, f(x)=\lceil x\rceil=-1

1<x0,f(x)=x=0-1\lt x \le0, f(x)=\lceil x\rceil=0

0<x1,f(x)=x=10\lt x \le1, f(x)=\lceil x\rceil=1

1<x2,f(x)=x=21\lt x \le2, f(x)=\lceil x\rceil=2




For ai(i,i+1),iZa_i\in(i, i+1), i\in \Z


limxaif(x)=i+1,f(a)=i+1,x(i,i+1)\lim\limits_{x\to a_i}f(x)=i+1, f(a)=i+1, x\in(i, i+1)

Therefore, the function f(x)f(x) is continuous at xR,xZx\in \R, x\notin \Z



For ai=iZ:a_i= i\in \Z:

for x(i1,i)x\in(i-1, i)


limxaif(x)=i,\lim\limits_{x\to a_i}f(x)=i,

for x(i,i+1)x\in(i, i+1)


limxaif(x)=i+1.\lim\limits_{x\to a_i}f(x)=i+1.

Then


limxaif(x)=does not exist\lim\limits_{x\to a_i}f(x)=does \ not \ exist

Therefore, the function f(x)f(x) is discontinuous at xZ.x\in \Z.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment