Find the following limit.:
Lim x →0 for 1-cos x²/x².sin x²
limx→01−cosx2x2sinx2=We use formulas1−cosa=2sin2a2sina=2sina2cosa2=limx→02sin2x22x22sinx22cosx22=limx→0sinx22x2cosx22=We use formulaslimx→0sinxx=1=limx→0sinx222⋅x22cosx22=12cos0=12\lim\limits _{x\to 0}\frac{1-cosx^2}{x^2sinx^2}=\\ \colorbox{aqua}{We use formulas}\\ 1-cosa=2sin^2\frac{a}{2}\\ sina=2sin\frac{a}{2}cos\frac{a}{2}\\ =\lim\limits _{x\to 0}\frac{2sin^2\frac{x^2}{2}}{x^22sin\frac{x^2}{2}cos\frac{x^2}{2}}=\lim\limits _{x\to 0}\frac{sin\frac{x^2}{2}}{x^2cos\frac{x^2}{2}}=\\ \colorbox{aqua}{We use formulas}\\ \lim\limits _{x\to 0}\frac{sinx}{x}=1\\ =\lim\limits _{x\to 0}\frac{sin\frac{x^2}{2}}{2\cdot\frac{x^2}{2}cos\frac{x^2}{2}}= \frac{1}{2cos0}=\frac{1}{2}x→0limx2sinx21−cosx2=We use formulas1−cosa=2sin22asina=2sin2acos2a=x→0limx22sin2x2cos2x22sin22x2=x→0limx2cos2x2sin2x2=We use formulasx→0limxsinx=1=x→0lim2⋅2x2cos2x2sin2x2=2cos01=21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment