Answer to Question #314383 in Real Analysis for Pankaj

Question #314383

Find the following limit.:


Lim x →0 for 1-cos x²/x².sin x²

1
Expert's answer
2022-03-20T06:44:34-0400

limx01cosx2x2sinx2=We use formulas1cosa=2sin2a2sina=2sina2cosa2=limx02sin2x22x22sinx22cosx22=limx0sinx22x2cosx22=We use formulaslimx0sinxx=1=limx0sinx222x22cosx22=12cos0=12\lim\limits _{x\to 0}\frac{1-cosx^2}{x^2sinx^2}=\\ \colorbox{aqua}{We use formulas}\\ 1-cosa=2sin^2\frac{a}{2}\\ sina=2sin\frac{a}{2}cos\frac{a}{2}\\ =\lim\limits _{x\to 0}\frac{2sin^2\frac{x^2}{2}}{x^22sin\frac{x^2}{2}cos\frac{x^2}{2}}=\lim\limits _{x\to 0}\frac{sin\frac{x^2}{2}}{x^2cos\frac{x^2}{2}}=\\ \colorbox{aqua}{We use formulas}\\ \lim\limits _{x\to 0}\frac{sinx}{x}=1\\ =\lim\limits _{x\to 0}\frac{sin\frac{x^2}{2}}{2\cdot\frac{x^2}{2}cos\frac{x^2}{2}}= \frac{1}{2cos0}=\frac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment