nc1+c2+...+cn≤c12+c22+...+cn2≤≤c1+c2+...+cnck>0,k=1,2,...,nnc1+c2+...+cn≤c12+c22+...+cn2(nc1+c2+...+cn)2≤(c12+c22+...+cn2)2n(c1+c2+...+cn)2≤c12+c22+...+cn2(c1+c2+...+cn)2≤n(c12+c22+...+cn2)
If n=1,c12≤c12 true.
Lets n=k,(c1+c2+...+ck)2≤k(c12+c22+...+ck2) .
Proof if n=k+1
(c1+c2+...+ck+1)2≤≤(k+1)(c12+c22+...+ck+12)(c1+c2+...+ck+1)2==((c1+c2+...+ck)+ck+1)2==(c1+c2+...+ck)2++2(c1+c2+...+ck)ck+1+ck+12≤≤k(c12+c22+...+ck2)++2(c1+c2+...+ck)ck+1+ck+12==k(c12+c22+...+ck2)++2c1ck+1+2c2ck+1+...+2ckck+1+ck+12≤
(a−b)2≥0a2−2ab+b2≥02ab≤a2+b2
≤k(c12+c22+...+ck2)++c12+ck+12+c22+ck+12+...+ck2+ck+12+ck+12==(k+1)(c12+c22+...+ck2)+(k+1)ck+12=(k+1)(c12+c22+...+ck2+ck+12)
True
c12+c22+...+cn2≤c1+c2+...+cnc12+c22+...+cn2≤(c1+c2+...+cn)2c12+c22+...+cn2≤c12+c22+...+cn2++2c1c2+...+2c1cn+...+2cn−1cnck>0,k=1,2,...,n0<2c1c2+...+2c1cn+...+2cn−1cn
True
Comments