Question #312172

let ck>0 for k=1,2,....,n.show that( c1+c2+....cn)/√n≤[ c1^2+c2^2+....+cn^2]^1/2≤c1+c2+...+cn


1
Expert's answer
2022-03-16T17:55:02-0400

c1+c2+...+cnnc12+c22+...+cn2c1+c2+...+cnck>0,k=1,2,...,nc1+c2+...+cnnc12+c22+...+cn2(c1+c2+...+cnn)2(c12+c22+...+cn2)2(c1+c2+...+cn)2nc12+c22+...+cn2(c1+c2+...+cn)2n(c12+c22+...+cn2)\frac{c_1+c_2+...+c_n}{\sqrt{n}}\leq\sqrt{c_1^2+c_2^2+...+c_n^2}\leq \\ \leq c_1+c_2+...+c_n\\ c_k>0, k=1,2,...,n\\ \frac{c_1+c_2+...+c_n}{\sqrt{n}}\leq\sqrt{c_1^2+c_2^2+...+c_n^2}\\ (\frac{c_1+c_2+...+c_n}{\sqrt{n}})^2\leq(\sqrt{c_1^2+c_2^2+...+c_n^2})^2\\ \frac{(c_1+c_2+...+c_n)^2}{n}\leq c_1^2+c_2^2+...+c_n^2\\ (c_1+c_2+...+c_n)^2\leq n(c_1^2+c_2^2+...+c_n^2)

If n=1,c12c12n=1, c_1^2\leq c_1^2 true.

Lets n=k,(c1+c2+...+ck)2k(c12+c22+...+ck2)n=k, (c_1+c_2+...+c_k)^2\leq k(c_1^2+c_2^2+...+c_k^2)\\ .

Proof if n=k+1n=k+1

(c1+c2+...+ck+1)2(k+1)(c12+c22+...+ck+12)(c1+c2+...+ck+1)2==((c1+c2+...+ck)+ck+1)2==(c1+c2+...+ck)2++2(c1+c2+...+ck)ck+1+ck+12k(c12+c22+...+ck2)++2(c1+c2+...+ck)ck+1+ck+12==k(c12+c22+...+ck2)++2c1ck+1+2c2ck+1+...+2ckck+1+ck+12(c_1+c_2+...+c_{k+1})^2\leq\\\leq (k+1)(c_1^2+c_2^2+...+c_{k+1}^2)\\ (c_1+c_2+...+c_{k+1})^2=\\=((c_1+c_2+...+c_k)+c_{k+1})^2=\\ =(c_1+c_2+...+c_k)^2+\\+2(c_1+c_2+...+c_k)c_{k+1}+c_{k+1}^2 \leq\\\leq k(c_1^2+c_2^2+...+c_{k}^2)+\\ +2(c_1+c_2+...+c_k)c_{k+1}+c_{k+1}^2=\\ =k(c_1^2+c_2^2+...+c_{k}^2)+\\ +2c_1c_{k+1}+2c_2c_{k+1}+...+2c_kc_{k+1}+c_{k+1}^2\leq

(ab)20a22ab+b202aba2+b2(a-b)^2\geq 0\\ a^2-2ab+b^2\geq0\\ 2ab\leq a^2+b^2

k(c12+c22+...+ck2)++c12+ck+12+c22+ck+12+...+ck2+ck+12+ck+12==(k+1)(c12+c22+...+ck2)+(k+1)ck+12=(k+1)(c12+c22+...+ck2+ck+12)\leq k(c_1^2+c_2^2+...+c_{k}^2)+\\ +c_1^2+c^2_{k+1}+c_2^2+c^2_{k+1}+...+c^2_k+c^2_{k+1}+c_{k+1}^2=\\ =(k+1)(c_1^2+c_2^2+...+c_{k}^2)+(k+1)c^2_{k+1}=\\ (k+1)(c_1^2+c_2^2+...+c_{k}^2+c^2_{k+1})

True

c12+c22+...+cn2c1+c2+...+cnc12+c22+...+cn2(c1+c2+...+cn)2c12+c22+...+cn2c12+c22+...+cn2++2c1c2+...+2c1cn+...+2cn1cnck>0,k=1,2,...,n0<2c1c2+...+2c1cn+...+2cn1cn\sqrt{c_1^2+c_2^2+...+c_n^2}\leq c_1+c_2+...+c_n\\ c_1^2+c_2^2+...+c_n^2\leq (c_1+c_2+...+c_n)^2\\ c_1^2+c_2^2+...+c_n^2\leq c_1^2+c_2^2+...+c_n^2+\\ +2c_1c_2+...+2c_1c_n+...+2c_{n-1}c_n\\ c_k>0, k=1,2,...,n\\ 0<2c_1c_2+...+2c_1c_n+...+2c_{n-1}c_n

True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS