Prove the limit of 𝑥𝑛 =1/2 [𝑥𝑛−1 + 𝑥𝑛]
xn=12(Xn−1+xn)xn=\frac{1}{2}(Xn-1 +xn)xn=21(Xn−1+xn)
limxn=x1+lim∑k=1n(xk+1−xk)\lim xn=x1+lim \sum_{k=1}^n(x_{k+1}-x_k)limxn=x1+lim∑k=1n(xk+1−xk)
=x1+x2−x1+lim∑k=2n(−1)k−1c2k−1=x_1+x_2-x_1+lim \sum_{k=2}^n\frac{(-1)^{k-1}c}{2^{k-1}}=x1+x2−x1+lim∑k=2n2k−1(−1)k−1c
=x2+clim(∑k=1n214k−∑k=1n212122k−1)=x_2+c lim(\sum_{k=1}^{\frac{n}{2}}\frac{1}{4^k}-\sum_{k=1}^{\frac{n}{2}}\frac{1}{2}\frac{1}{2^{2k-1}})=x2+clim(∑k=12n4k1−∑k=12n2122k−11)
=x2+c(14−(∑k=0n−121214k)=x_2+c(\frac{1}{4}- (\sum_{k=0}^{\frac{n-1}{2}}\frac{1}{2}\frac{1}{4^k})=x2+c(41−(∑k=02n−1214k1)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments