Question #299949

Test the series ∞ Σ n=1 (-1)^n-1. 3/(5n-2) for absolute and conditional convergence

1
Expert's answer
2022-02-22T11:19:06-0500

ANSWER The series n=13(1)n15n2\sum_{n=1}^{\infty}\frac{{3\cdot \left (-1 \right )}^{n-1}}{5n-2} is conditionally convergent .

EXPLANATION.

First we check absolute convergence . n=1 3(1)n15n2=n=135n2\sum_{n=1}^{\infty}\ \left | \frac{{3\cdot \left (-1 \right )}^{n-1}}{5n-2} \right |=\sum_{n=1}^{\infty}\frac {3 }{5n-2} . Let an=35n2.a _{n}=\frac{3}{5n-2}.

limn35n21n=limn3n5n2=limn352n=35\lim_{n \rightarrow\infty}\frac{\frac{3}{5n-2}}{\frac{1}{n}}=\lim_{n \rightarrow\infty}\frac{3n}{5n-2}=\lim_{n \rightarrow\infty}\frac{3 }{5 -\frac{2}{n}}=\frac{3}{5} . Since limnan1n=35>0\lim_{n \rightarrow\infty}\frac {a_{n}} {\frac{1}{n}}=\frac{3}{5}>0 and the series n=11n\sum_{n=1}^{\infty}\frac{1}{n} diverges ,then by the Limit Comparison Test n=135n2\sum_{n=1}^{\infty}\frac {3 }{5n-2} diverges. Therefore , the series does not converge absolutely.

The series n=13(1)n15n2\sum_{n=1}^{\infty}\frac{{3\cdot \left (-1 \right )}^{n-1}}{5n-2} is alternating. Check the two conditions: 1)limnan=limn35n2=01) \lim_{n\rightarrow\infty}a_{n}=\lim_{n\rightarrow\infty}\frac{3} {5n-2}=0 . 2)an+1an2)a _{n+1} \leq a_{n} , because 5(n+1)25n25\cdot\left ( n+1 \right ) -2 \ge 5 n-2\\ so

35(n+1)235n2\frac{3}{5\cdot\left ( n+1 \right ) -2}\le \frac{3}{5n-2} .

Since the two conditions of the Alternating Series Test are satisfied , n=13(1)n15n2\sum_{n=1}^{\infty}\frac{{3\cdot \left (-1 \right )}^{n-1}}{5n-2} is conditionally convergent by the Alternating Series Test .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS