If V(f,[a,b])<∞ , then f is of bounded variation on [a,b] .
V(f,[a,b])=sup{i=1∑n∣∣f(xi)−f(xi−1)∣∣,where a=x0<x1<…<xn=b}
1) f is increasing
i=1∑n∣∣f(xi)−f(xi−1)∣∣=i=1∑n(f(xi)−f(xi−1))=f(x1)−f(x0)+f(x2)−f(x1)+…+f(xn)−f(xn−1)=f(xn)−f(x0)=f(b)−f(a)
So, V(f,[a,b])=f(b)−f(a)<∞ .
Therefore f is of bounded variation on [a,b] .
2) f is decreasing i=1∑n∣∣f(xi)−f(xi−1)∣∣=i=1∑n(f(xi−1)−f(xi))=f(x0)−f(x1)+f(x1)−f(x2)+…+f(xn−1)−f(xn)=f(x0)−f(xn)=f(a)−f(b)
So, V(f,[a,b])=f(a)−f(b)<∞ .
Therefore f is of bounded variation on [a,b] .
Comments