Question #298022

If f is monotonic on (a,b) then show that f is of bounded variation on(a,b)

1
Expert's answer
2022-02-15T17:52:21-0500

If  V(f,[a,b])<\ V(f,[a,b])< \infty , then ff is of bounded variation on [a,b][a,b] .

V(f,[a,b])=sup{i=1nf(xi)f(xi1),where a=x0<x1<<xn=b}V(f,[a,b])=\sup \big\{\sum\limits_{i=1}^n\big|f(x_i)-f(x_{i-1})\big|, \text{where }a=x_0<x_1<…<x_n=b\}


1) ff is increasing

i=1nf(xi)f(xi1)=i=1n(f(xi)f(xi1))=f(x1)f(x0)+f(x2)f(x1)++f(xn)f(xn1)=f(xn)f(x0)=f(b)f(a)\sum\limits_{i=1}^n\big|f(x_i)-f(x_{i-1})\big|= \sum\limits_{i=1}^n\big(f(x_i)-f(x_{i-1})\big)=f(x_1)-f(x_0)+f(x_2)-f(x_1)+…+f(x_n)-f(x_{n-1})=f(x_n)-f(x_0)=f(b)-f(a)


So, V(f,[a,b])=f(b)f(a)<V(f,[a,b])=f(b)-f(a)<\infty .

Therefore ff is of bounded variation on [a,b][a,b] .


2) ff is decreasing i=1nf(xi)f(xi1)=i=1n(f(xi1)f(xi))=f(x0)f(x1)+f(x1)f(x2)++f(xn1)f(xn)=f(x0)f(xn)=f(a)f(b)\sum\limits_{i=1}^n\big|f(x_i)-f(x_{i-1})\big|= \sum\limits_{i=1}^n\big(f(x_{i-1})-f(x_{i})\big)=f(x_0)-f(x_1)+f(x_1)-f(x_2)+…+f(x_{n-1})-f(x_{n})=f(x_0)-f(x_n)=f(a)-f(b)


So, V(f,[a,b])=f(a)f(b)<V(f,[a,b])=f(a)-f(b)<\infty .

Therefore ff is of bounded variation on [a,b][a,b] .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS