If V ( f , [ a , b ] ) < ∞ \ V(f,[a,b])< \infty V ( f , [ a , b ]) < ∞ , then f f f is of bounded variation on [ a , b ] [a,b] [ a , b ] .
V ( f , [ a , b ] ) = sup { ∑ i = 1 n ∣ f ( x i ) − f ( x i − 1 ) ∣ , where a = x 0 < x 1 < … < x n = b } V(f,[a,b])=\sup \big\{\sum\limits_{i=1}^n\big|f(x_i)-f(x_{i-1})\big|, \text{where }a=x_0<x_1<…<x_n=b\} V ( f , [ a , b ]) = sup { i = 1 ∑ n ∣ ∣ f ( x i ) − f ( x i − 1 ) ∣ ∣ , where a = x 0 < x 1 < … < x n = b }
1) f f f is increasing
∑ i = 1 n ∣ f ( x i ) − f ( x i − 1 ) ∣ = ∑ i = 1 n ( f ( x i ) − f ( x i − 1 ) ) = f ( x 1 ) − f ( x 0 ) + f ( x 2 ) − f ( x 1 ) + … + f ( x n ) − f ( x n − 1 ) = f ( x n ) − f ( x 0 ) = f ( b ) − f ( a ) \sum\limits_{i=1}^n\big|f(x_i)-f(x_{i-1})\big|= \sum\limits_{i=1}^n\big(f(x_i)-f(x_{i-1})\big)=f(x_1)-f(x_0)+f(x_2)-f(x_1)+…+f(x_n)-f(x_{n-1})=f(x_n)-f(x_0)=f(b)-f(a) i = 1 ∑ n ∣ ∣ f ( x i ) − f ( x i − 1 ) ∣ ∣ = i = 1 ∑ n ( f ( x i ) − f ( x i − 1 ) ) = f ( x 1 ) − f ( x 0 ) + f ( x 2 ) − f ( x 1 ) + … + f ( x n ) − f ( x n − 1 ) = f ( x n ) − f ( x 0 ) = f ( b ) − f ( a )
So, V ( f , [ a , b ] ) = f ( b ) − f ( a ) < ∞ V(f,[a,b])=f(b)-f(a)<\infty V ( f , [ a , b ]) = f ( b ) − f ( a ) < ∞ .
Therefore f f f is of bounded variation on [ a , b ] [a,b] [ a , b ] .
2) f f f is decreasing ∑ i = 1 n ∣ f ( x i ) − f ( x i − 1 ) ∣ = ∑ i = 1 n ( f ( x i − 1 ) − f ( x i ) ) = f ( x 0 ) − f ( x 1 ) + f ( x 1 ) − f ( x 2 ) + … + f ( x n − 1 ) − f ( x n ) = f ( x 0 ) − f ( x n ) = f ( a ) − f ( b ) \sum\limits_{i=1}^n\big|f(x_i)-f(x_{i-1})\big|= \sum\limits_{i=1}^n\big(f(x_{i-1})-f(x_{i})\big)=f(x_0)-f(x_1)+f(x_1)-f(x_2)+…+f(x_{n-1})-f(x_{n})=f(x_0)-f(x_n)=f(a)-f(b) i = 1 ∑ n ∣ ∣ f ( x i ) − f ( x i − 1 ) ∣ ∣ = i = 1 ∑ n ( f ( x i − 1 ) − f ( x i ) ) = f ( x 0 ) − f ( x 1 ) + f ( x 1 ) − f ( x 2 ) + … + f ( x n − 1 ) − f ( x n ) = f ( x 0 ) − f ( x n ) = f ( a ) − f ( b )
So, V ( f , [ a , b ] ) = f ( a ) − f ( b ) < ∞ V(f,[a,b])=f(a)-f(b)<\infty V ( f , [ a , b ]) = f ( a ) − f ( b ) < ∞ .
Therefore f f f is of bounded variation on [ a , b ] [a,b] [ a , b ] .
Comments