Answer to Question #294905 in Real Analysis for Nikhil Singh

Question #294905

Show that the sequence (fn) sequence where


fn(x)= x/(1+nx^2), x∈[2,∞] is uniformly convergent in [2,∞]

1
Expert's answer
2022-02-09T12:08:09-0500

ANSWER .

Let xx be fixed and x[2,)x\in [2,\infty ) . Then f(x)=limnfn(x)=limnx1+nx2=xlimn(1n11n+x2)=f(x)=\lim _{ n\rightarrow \infty }{ { f }_{ n } } \left( x \right) =\lim _{ n\rightarrow \infty }{ \frac { x }{ 1+n{ x }^{ 2 } } = } x\lim _{ n\rightarrow \infty }{ \left( \frac { 1 }{ n } \cdot \frac { 1 }{ \frac { 1 }{ n } +{ x }^{ 2 } } \right) = } =x(limn(1n )1x2+limn1n)=0=x\left( \lim _{ n\rightarrow \infty }{ \left( \frac { 1 }{ n } \ \right) \cdot \frac { 1 }{ { x }^{ 2 }+\lim _{ n\rightarrow \infty }{ \frac { 1 }{ n } } } } \right) =0 . So fnf_n converges pointwise to f(x)=0.f(x)=0.

Denote dn=sup2x<fn(x)f(x){ d }_{ n }=\underset { 2\le x<\infty }{ sup } \left| { f }_{ n }\left( x \right) -f\left( x \right) \right| . Since fn(x)=1+nx22nx2(1+nx2)2=1nx2(1+nx2)2<0{ f }_{ n }^{ ' }\left( x \right) =\frac { 1+n{ x }^{ 2 }-2n{ x }^{ 2 } }{ { \left( 1+n{ x }^{ 2 } \right) }^{ 2 } } =\frac { 1-n{ x }^{ 2 } }{ { \left( 1+n{ x }^{ 2 } \right) }^{ 2 } } <0^{} for all x2x\ge 2 (n1)\left( n\ge 1 \right) ,then each function fnf_n decreases on the interval [2,)[2,\infty )

Therefore, sup2x<x1+nx2=fn(2)=21+4n\underset { 2\le x<\infty }{ sup } \frac { x }{ 1+n{ x }^{ 2 } } ={ f }_{ n }\left( 2 \right) =\frac { 2 }{ 1+4n } . So, dn=sup2x<x1+nx20=21+4n{ d }_{ n }=\underset { 2\le x<\infty }{ sup } \left| \frac { x }{ 1+n{ x }^{ 2 } } -0 \right| =\frac { 2 }{ 1+4n } . Since , limndn=limn21+4n=0\lim _{ n\rightarrow \infty }{ { d }_{ n }= } \lim _{ n\rightarrow \infty }{ \frac { 2 }{ 1+4n } =0 }, then by definition, we get that the sequence converges uniformly in [2,)[2,\infty ) .

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment