fn(x)= x/(1+nx^2), x∈[2,∞] is uniformly convergent in [2,∞]
1
Expert's answer
2022-02-09T12:08:09-0500
ANSWER .
Let x be fixed and x∈[2,∞) . Then f(x)=limn→∞fn(x)=limn→∞1+nx2x=xlimn→∞(n1⋅n1+x21)==x(limn→∞(n1)⋅x2+limn→∞n11)=0 . So fn converges pointwise to f(x)=0.
Denote dn=2≤x<∞sup∣fn(x)−f(x)∣ . Since fn′(x)=(1+nx2)21+nx2−2nx2=(1+nx2)21−nx2<0 for all x≥2(n≥1) ,then each function fn decreases on the interval [2,∞)
Therefore, 2≤x<∞sup1+nx2x=fn(2)=1+4n2 . So, dn=2≤x<∞sup∣∣1+nx2x−0∣∣=1+4n2 . Since , limn→∞dn=limn→∞1+4n2=0, then by definition, we get that the sequence converges uniformly in [2,∞) .
Comments
Leave a comment