Σn=1∞nn(−1)n−1sinnx=Σn=1∞n3/2(−1)n−1sinnx
Let an=n3/2(−1)n−1sinnx
⇒an+1=(n+1)3/2(−1)nsin(n+1)x
Now, p=limn→∞∣anan+1∣=limn→∞∣n3/2(−1)n−1sinnx(n+1)3/2(−1)nsin(n+1)x∣
=limn→∞∣(n+1)3/2sinnx(−1)sin(n+1)x.n3/2∣=limn→∞∣(1+n1)3/2sinnxsin(n+1)x∣=limn→∞∣(1+n1)3/21∣×limn→∞∣sinnxsin(n+1)x∣=1×∞=∞
So, p>1
Thus, the series is divergent by the ratio test.
Comments
Leave a comment