Answer to Question #292512 in Real Analysis for Reens

Question #292512

test the series : infinity sigma n=1 (-1) ^n-1 sin nx/n√n for absolute and conditional convergence

1
Expert's answer
2022-02-15T15:14:45-0500

Σn=1(1)n1sinnxnn=Σn=1(1)n1sinnxn3/2\Sigma_{n=1}^{\infty} \dfrac{(-1)^{n-1}\sin nx}{n\sqrt n} \\=\Sigma_{n=1}^{\infty} \dfrac{(-1)^{n-1}\sin nx}{n^{3/2}}

Let an=(1)n1sinnxn3/2a_n=\dfrac{(-1)^{n-1}\sin nx}{n^{3/2}}

an+1=(1)nsin(n+1)x(n+1)3/2\Rightarrow a_{n+1}=\dfrac{(-1)^{n}\sin (n+1)x}{(n+1)^{3/2}}

Now, p=limnan+1an=limn(1)nsin(n+1)x(n+1)3/2(1)n1sinnxn3/2p=\lim_{n\rightarrow \infty}|\dfrac{a_{n+1}}{a_n}|=\lim_{n\rightarrow \infty}|\dfrac{\dfrac{(-1)^{n}\sin (n+1)x}{(n+1)^{3/2}}}{\dfrac{(-1)^{n-1}\sin nx}{n^{3/2}}}|

=limn(1)sin(n+1)x.n3/2(n+1)3/2sinnx=limnsin(n+1)x(1+1n)3/2sinnx=limn1(1+1n)3/2×limnsin(n+1)xsinnx=1×==\lim_{n\rightarrow \infty}|{\dfrac{(-1)\sin (n+1)x.n^{3/2}}{(n+1)^{3/2}\sin nx}}| \\=\lim_{n\rightarrow \infty}|{\dfrac{\sin (n+1)x}{(1+\frac 1n)^{3/2}\sin nx}}| \\=\lim_{n\rightarrow \infty}|{\dfrac{1}{(1+\frac 1n)^{3/2}}}|\times \lim_{n\rightarrow \infty}|{\dfrac{\sin (n+1)x}{\sin nx}}| \\=1\times \infty \\= \infty

So, p>1p>1

Thus, the series is divergent by the ratio test.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment