Question #291367

The function f: R→R defined by f(x)= | x-1|+ | 3-x| is differentiable at x= 4.


True or false with full explanation

1
Expert's answer
2022-02-02T09:38:33-0500

The given function is f(x)=x1+3x, xR.f(x)=|x-1|+|3-x|,\ x\in\R.


But, the derivative of a sum is the sum of derivatives so;

ddx(x3+x1)=ddx(x3)+ddx(x1)\displaystyle \frac{d}{dx} \left(\left|{x - 3}\right| + \left|{x - 1}\right|\right) = \frac{d}{dx} \left(\left|{x - 3}\right|\right) + \frac{d}{dx} \left(\left|{x - 1}\right|\right)


The function x3\displaystyle \left|{x - 3}\right| is the composition f(g(x))\displaystyle f{\left(g{\left(x \right)} \right)} of two functions f(u)=u\displaystyle f{\left(u \right)} = \left|{u}\right| and

g(x)=x3\displaystyle g{\left(x \right)} = x - 3.

Also, The function x1\displaystyle \left|{x - 1}\right| is the composition  h(k(x))\displaystyle h{\left(k{\left(x \right)} \right)} of two functions h(v)=v\displaystyle h{\left(v \right)} = \left|{v}\right| and

k(x)=x1\displaystyle k{\left(x \right)} = x - 1

Now, apply the chain rule which is ddx(f(g(x)))=ddu(f(u))ddx(g(x))\displaystyle \frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right) and

ddx(h(k(x)))=ddu(h(v))ddx(k(x))\displaystyle \frac{d}{dx} \left(h{\left(k{\left(x \right)} \right)}\right) = \frac{d}{du} \left(h{\left(v \right)}\right) \frac{d}{dx} \left(k{\left(x \right)}\right).

Where ddu(u)=uu and ddv(v)=vv\displaystyle \frac{d}{du} \left(\left|{u}\right|\right) = \frac{u}{\left|{u}\right|}\text{ and } \frac{d}{dv} \left(\left|{v}\right|\right) = \frac{v}{\left|{v}\right|}

We have;

ddx(x3)+ddx(x1)=ddu(u)ddx(x3)+ddv(v)ddx(x1)\displaystyle \frac{d}{dx} \left(\left|{x - 3}\right|\right) + \frac{d}{dx} \left(\left|{x - 1}\right|\right) = \frac{d}{du} \left(\left|{u}\right|\right) \frac{d}{dx} \left(x - 3\right) + \frac{d}{dv}(|v|)\frac{d}{dx} \left({x - 1}\right)


=(u)ddx(x3)u+(v)ddx(x1)v\displaystyle =\frac{\left(u\right) \frac{d}{dx} \left(x - 3\right)}{\left|u\right|} + \frac{\left(v\right) \frac{d}{dx} \left(x - 1\right)}{\left|v\right|} \\

=(x3)ddx(x3)x3+(x1)ddx(x1)x1\displaystyle =\frac{\left(x - 3\right) \frac{d}{dx} \left(x - 3\right)}{\left|{x - 3}\right|} + \frac{\left(x - 1\right) \frac{d}{dx} \left(x - 1\right)}{\left|{x - 1}\right|} \\

=(x3)x3+x1x1\displaystyle = \frac{\left(x - 3\right) }{\left|{x - 3}\right|} + \frac{x - 1}{\left|{x - 1}\right|}

Thus,

ddx(x3+x1)=x3x3+x1x1\displaystyle \frac{d}{dx} \left(\left|{x - 3}\right| + \left|{x - 1}\right|\right) = \frac{x - 3}{\left|{x - 3}\right|} + \frac{x - 1}{\left|{x - 1}\right|}

Hence, the given function is differentiable at x=4\displaystyle x=4 and

ddx(x3+x1)(x=4)=2\displaystyle \frac{d}{dx} \left(\left|{x - 3}\right| + \left|{x - 1}\right|\right)|_{\left(x = 4\right)} = 2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS