The given function is f(x)=∣x−1∣+∣3−x∣, x∈R.
But, the derivative of a sum is the sum of derivatives so;
dxd(∣x−3∣+∣x−1∣)=dxd(∣x−3∣)+dxd(∣x−1∣)
The function ∣x−3∣ is the composition f(g(x)) of two functions f(u)=∣u∣ and
g(x)=x−3.
Also, The function ∣x−1∣ is the composition h(k(x)) of two functions h(v)=∣v∣ and
k(x)=x−1
Now, apply the chain rule which is dxd(f(g(x)))=dud(f(u))dxd(g(x)) and
dxd(h(k(x)))=dud(h(v))dxd(k(x)).
Where dud(∣u∣)=∣u∣u and dvd(∣v∣)=∣v∣v
We have;
dxd(∣x−3∣)+dxd(∣x−1∣)=dud(∣u∣)dxd(x−3)+dvd(∣v∣)dxd(x−1)
=∣u∣(u)dxd(x−3)+∣v∣(v)dxd(x−1)
=∣x−3∣(x−3)dxd(x−3)+∣x−1∣(x−1)dxd(x−1)
=∣x−3∣(x−3)+∣x−1∣x−1
Thus,
dxd(∣x−3∣+∣x−1∣)=∣x−3∣x−3+∣x−1∣x−1
Hence, the given function is differentiable at x=4 and
dxd(∣x−3∣+∣x−1∣)∣(x=4)=2
Comments