Question #294794

Let f(x)=x, show that f is Riemann integrable in the interval [a,b]. Hence find the Riemann integral of f.


1
Expert's answer
2022-02-08T14:32:43-0500

Consider the partition P={xo=a,x1=a+baN,x2=a+2(baN),,b}where h=baN, NN\displaystyle P=\left\{x_o=a,x_1=a+\frac{b-a}{N},x_2=a+2\left(\frac{b-a}{N}\right),\cdots ,b\right\}\text{where }h=\frac{b-a}{N},\ N\in\N\ni

xk=x0+kh=a+k(baN),where k=0,1,,N\displaystyle x_k=x_0+kh=a+k\left(\frac{b-a}{N}\right),\text{where } k=0,1,\cdots,N of [a,b][a,b].

Then,

U(P,f)=k=1Nf(xk)(xkxk1)=k=1Nxk(ban)=k=1N[a+k(ban)](ban)\displaystyle U(P,f)=\sum^N_{k=1}f(x_k)(x_k-x_{k-1})=\sum^N_{k=1}x_k\left(\frac{b-a}{n}\right)=\sum^N_{k=1}\left[a+k\left(\frac{b-a}{n}\right)\right]\left(\frac{b-a}{n}\right)

=k=1Na(baN)+k=1Nk(baN)2=a(baN)k=1N1+(baN)2k=1Nk\displaystyle =\sum^N_{k=1}a\left(\frac{b-a}{N}\right)+\sum^N_{k=1}k\left(\frac{b-a}{N}\right)^2=a\left(\frac{b-a}{N}\right)\sum^N_{k=1}1+\left(\frac{b-a}{N}\right)^2\sum^N_{k=1}k

=a(baN)N+(baN)2N(N+1)2=a(ba)+(ba)22(1+1N)\displaystyle =a\left(\frac{b-a}{N}\right)N+\left(\frac{b-a}{N}\right)^2\frac{N(N+1)}{2}=a(b-a)+\frac{(b-a)^2}{2}\left(1+\frac{1}{N}\right)


L(P,f)=k=1Nf(xk1)(xkxk1)=k=1Nxk1(ban)\displaystyle L(P,f)=\sum^N_{k=1}f(x_{k-1})(x_k-x_{k-1})=\sum^N_{k=1}x_{k-1}\left(\frac{b-a}{n}\right)

=k=1N[a+(k1)(ban)](ban)\displaystyle =\sum^N_{k=1}\left[a+(k-1)\left(\frac{b-a}{n}\right)\right]\left(\frac{b-a}{n}\right)

=k=1Na(baN)+k=1N(k1)(baN)2\displaystyle =\sum^N_{k=1}a\left(\frac{b-a}{N}\right)+\sum^N_{k=1}(k-1)\left(\frac{b-a}{N}\right)^2

=a(baN)k=1N1+(baN)2k=1N(k1)\displaystyle =a\left(\frac{b-a}{N}\right)\sum^N_{k=1}1+\left(\frac{b-a}{N}\right)^2\sum^N_{k=1}(k-1)

=a(baN)k=1N1+(baN)2k=0N1k\displaystyle \displaystyle =a\left(\frac{b-a}{N}\right)\sum^N_{k=1}1+\left(\frac{b-a}{N}\right)^2\sum^{N-1}_{k=0}k

=a(baN)N+(baN)2N(N1)2\displaystyle =a\left(\frac{b-a}{N}\right)N+\left(\frac{b-a}{N}\right)^2\frac{N(N-1)}{2}

=a(ba)+(ba)22(11N)\displaystyle =a(b-a)+\frac{(b-a)^2}{2}\left(1-\frac{1}{N}\right)

Since limNU(Pn,f)=limNL(Pn,f)=a(ba)+(ba)22=b2a22\displaystyle \lim_{N\rightarrow \infty}U(P_n,f)=\lim_{N\rightarrow \infty}L(P_n,f)=a(b-a)+\frac{(b-a)^2}{2}=\frac{b^2-a^2}{2} this implies that f(x)=xf(x)=x is Riemann integrable on [a,b][a,b] with;

abf(x) dx=abx dx=b2a22\displaystyle \int^b_af(x)\ dx=\int^b_ax\ dx=\frac{b^2-a^2}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS