Consider the partition P={xo=a,x1=a+Nb−a,x2=a+2(Nb−a),⋯,b}where h=Nb−a, N∈N∋
xk=x0+kh=a+k(Nb−a),where k=0,1,⋯,N of [a,b].
Then,
U(P,f)=k=1∑Nf(xk)(xk−xk−1)=k=1∑Nxk(nb−a)=k=1∑N[a+k(nb−a)](nb−a)
=k=1∑Na(Nb−a)+k=1∑Nk(Nb−a)2=a(Nb−a)k=1∑N1+(Nb−a)2k=1∑Nk
=a(Nb−a)N+(Nb−a)22N(N+1)=a(b−a)+2(b−a)2(1+N1)
L(P,f)=k=1∑Nf(xk−1)(xk−xk−1)=k=1∑Nxk−1(nb−a)
=k=1∑N[a+(k−1)(nb−a)](nb−a)
=k=1∑Na(Nb−a)+k=1∑N(k−1)(Nb−a)2
=a(Nb−a)k=1∑N1+(Nb−a)2k=1∑N(k−1)
=a(Nb−a)k=1∑N1+(Nb−a)2k=0∑N−1k
=a(Nb−a)N+(Nb−a)22N(N−1)
=a(b−a)+2(b−a)2(1−N1)
Since N→∞limU(Pn,f)=N→∞limL(Pn,f)=a(b−a)+2(b−a)2=2b2−a2 this implies that f(x)=x is Riemann integrable on [a,b] with;
∫abf(x) dx=∫abx dx=2b2−a2
Comments