Question #293684

Prove that the sequence {an/n} is convergent where { an} is a bounded sequence

1
Expert's answer
2022-02-06T13:38:44-0500

Solution:

Given that {an}\left\{a_{n}\right\}  is a bounded sequence.

anM\Rightarrow \quad\left|a_{n}\right| \leqslant M  for all nNn \in \mathbb{N} , for some MR+M \in \mathbb{R}^{+}

annmn\Rightarrow\left|\frac{a_{n}}{n}\right| \leqslant \frac{m}{n}

But the sequence mn\frac{m}{n}  converges to 0 .

limnannlimnmn=0limnann=0[ann is a non negative sequence ]limnann=0[annannannBy sandwich theorem]]\left.\begin{array}{rl} \therefore & \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{n}\right| \leqslant \lim _{n \rightarrow \infty} \frac{m}{n}=0 \\ \Rightarrow & \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{n}\right|=0 \quad\left[\because\left|\frac{a_{n}}{n}\right| \text { is a non negative sequence }\right] \\ \Rightarrow & \lim _{n \rightarrow \infty} \frac{a_{n}}{n}=0 \quad\left[\because-\left|\frac{a_{n}}{n}\right| \leqslant \frac{a_{n}}{n} \leqslant\left|\frac{a_{n}}{n}\right|\right. \text{By sandwich theorem}] \\ \end{array}\right]

Hence, proved.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS