iii)f(x)=x2−1 and the partition Pn of [-1, 1] is:Pn={xi=n2i−1:i=0,1,2,⋯,n}Thus, we have that:U(f,Pn)=∑i=0n−1f(xi+1)(xi+1−xi)=∑i=0n−1(xi+12−1)(xi+1−xi)=∑i=0n−1[n24(i+1)2−n4(i+1)]n2=n38∑i=0n−1(i+1)2−n28∑i=0n−1(i+1)=n38∑i=1ni2−n28∑i=1ni=n38[6n(n+1)(2n+1)]−n28[2n(n+1)]=6n28(n+1)(2n+1)−2n28n(n+1)=3n24−34L(f,Pn)=∑i=0n−1f(xi)(xi+1−xi)=∑i=0n−1(xi2−1)(xi+1−xi)=∑i=0n−1[n24i2−n4i]n2=n38∑i=0n−1i2−n28∑i=0n−1i=n38∑i=0n−1i2−n28∑i=0n−1i=n38[6n(n−1)(2n−1)]−n28[2n(n−1)]=6n28(n−1)(2n−1)−2n28n(n−1)=3n24−34ii)Put n=10 in question number (iii) above, we have:U(f,P10)=U(f,P10)=−2533i)Put n=4 in question number (iii) above, we have:U(f,P4)=U(f,P4)=−45
Comments