Question #289478

If f is monotonic on [a,b], then show that f is of bounded variation on [a,b]. 


1
Expert's answer
2022-01-24T16:05:11-0500

A functionf:[a,b]Rf : [a,b] →R is monotonic if and only if ff is a function with bounded variation and Vab=f(b)f(a).\overset{b}{ \underset{a}{V}} = | f(b) – f(a) |.


A functionf:[a,b]Rf : [a,b] →R is called with bounded variation on [a,b][a,b] if there is M>0M > 0 such that for any partition =(a=x0<x1<...<xn=b)∆ = (a = x_0 < x_1 < ... < x_n = b) of the interval [a,b] we have:

Vab=sup{V(f)∆ division of [a,b]}\overset{b}{ \underset{a}{V}} = sup \{V_∆(f) |∆ \ division \ of\ [a,b]\}

is called the total variation of the function f on the interval [a,b][a,b] .


Given a monotonic function f:[a,b]Rf: [a,b]→R and a partition P={a=x0<x1<x2<...<xn<b=xn+1}P=\{a=x_0< x_1< x_2< ... < x_n< b=x_n+1\}

of [a,b][a,b], the variation of ff over PP is;



VP(f)=j=0nf(xj)f(xj+1).V_P(f) =∑_{j=0}^n|f(x_j)−f(x_{j+1})|.

ff is of bounded variation if the numbers VP(f)V_P(f) form a bounded set, as PP ranges over the set of all partitions of [a,b][a,b]. We denote the supremum of the VP(f)V_P(f) over all partitions PP by Vab(f)V_{ab}(f), the variation of ff from aa to bb.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS