Question #288896

Give an example of an infinite set with finite number of limit points, with proper justification.

1
Expert's answer
2022-01-20T17:15:11-0500

The set{1nnZ+}{1+1nnZ+} is an infinite set which has a finite limit pointBy the definition of limit, we can write{1nnZ+}aslimn1n=0while for{1+1nnZ+}write aslimn(1+1n)=1Hence,{1nnZ+}{1+1nnZ+}={0,1}which is finite.\text{The set}\\ \Big\{\frac{1}{n} \mid n \in \mathbb{Z}^+\Big\} \bigcup \\ \Big\{1+ \frac{1}{n} \mid n \in \mathbb{Z}^+\Big\} \\ \text{ is an infinite set which has a finite limit point} \\ \text{By the definition of limit, we can write}\\ \Big\{\frac{1}{n} \mid n \in \mathbb{Z}^+\Big\} \\ \text{as}\\ \lim_{n \to \infty} \frac{1}{n} = 0 \\ \text{while for}\\ \Big\{1+ \frac{1}{n} \mid n \in \mathbb{Z}^+\Big\}\\ \text{write as}\\ \lim_{n \to \infty} (1 + \frac{1}{n}) = 1 \\ \text{Hence,}\\ \Big\{\frac{1}{n} \mid n \in \mathbb{Z}^+\Big\} \bigcup \\ \Big\{1+ \frac{1}{n} \mid n \in \mathbb{Z}^+\Big\} = \{0,1\} \, \text{which is finite.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS